[bookmark: _tt7noka9dkft]TPs MPI
Mandatory exercises after Lab 1: 1, 2, 3, 4, 5
Mandatory exercises after Lab 2: 6, 7, 8
Mandatory exercises after Lab 3: 9, 10, 12
[bookmark: _c8g86vo76rxr]Exercise 1: warm up [Check the environment work, basic collective operations]
Run the test_graphic.py and test_mpi.py from the files for the codes.zip archive (in the Labs directory)
· python3 test_graphic.py
· mpirun -n 2 python3 test_mpi.py
Run the codes in the Lesson directory
· Run and analyze at least bcast.py, gather.py, scatter.py and reduce.py
· What is the difference between scatter.py and scatter_generic.py? Try to run them with 3 nodes. Try with 4 nodes.
· Try reduce.py with 10 processes using the following command: mpirun --oversubscribe -n 10 python3 reduce.py
[bookmark: _uo7fopuh9gif]Exercise 2: passnumber [Choose the right collective]
Consider that you have a number that is only available on the process with rank==0. You want to print it on the screen in all processes.
As an example, with 2 processes and the number 42 only available on the process with rank==0, the command mpirun -n 2 number.py 42 could print:

At start in process of rank 0 the passnumber is 42
At start in process of rank 1 the passnumber is 0
After collective in process of rank 1 the passnumber is 42
After collective in process of rank 0 the passnumber is 42
[bookmark: _vbkhk9o86twz]Exercise 3: random generator [Choose the right collective]
We will check if the random generator from numpy is reproducible. The goal is to generate arrays of random numbers on multiple processes, then to check if all the values are the same. We will use the command np.random.seed(0) that initializes the random generator with a particular starting point. The goal is the following:
· On each process, initialize the random generator
On each process, generate 10 integers between 0 and 99 (see the rand.py file in the Labs folder of codes.zip for an example)
· Verify that the min and max of each of these 10 elements are the same on each array
· Print either true or false depending on the result
· Run it again without initializing the random generator (commenting the seed command)
[bookmark: _d727i7sial9r]Exercise 4: sum of N first integers [compute the bounds locally in each process]
Compute in parallel the sum between 0 and an argument passed on the command line. We have a function cumul(a,b) that computes the sum of all values between a (included) and b (excluded). cumul(1,4) = 1+2+3 = 6. We assume the argument is a multiple of the number of processes. The goal of this exercise is to be able to compute the bounds (a and b) on each process independently
· Start with the sequential version (Labs folder of codes.zip) and test it (python3 cumul.py 100 should give 4950)
· Compute the bounds a and b of cumul for each process without communication
· Finish the parallel version (using only one collective operation)
[bookmark: _cofuhjojqw8a]Exercise 5: teams of process [Choose the right collective]
We want to make two teams of processes. The blue and the green ones. Only the process with rank==0 has access to the file containing the information. As shown in the file teams.py (in the Labs folder of codes.zip), we will simulate this by generating random numbers in the node with rank==0. As an example, if the file contains [0, 1, 0, 1] and there are 4 processes, (with 0 for blue team and 1 for the green one), we could obtain:
The file contains [0 1 0 1]
I am 0 and my team is blue
I am 2 and my team is blue
I am 3 and my team is green
I am 1 and my team is green
[bookmark: _2nu7g2epom7n]Exercise 6: position of the max [Focus on the memory management]
We want to know the position of the maximum in an array. The array is considered to be only in the process with rank==0 but all processes know its length. A sequential example is in max_pos.py. To compute this position in parallel, we will
1. Distribute the array using a single collective operation
2. Find the position and value of the local maximum
3. Send using a single collective operation these two values to the node with rank==0
4. Compute using these values the position of the overall maximum
[bookmark: _3aq1lpz3fw0r]Exercise 7: Monte Carlo Simulation to compute π [Performance evaluation][image:]
Surface of circle is π * r² we will use this equation to compute π

1. Run the sequential code in monte_carlo.py
2. Implement a parallel version of the same algorithm where
a. All the processes know the total number nb of random draws to do
b. There is no communication at the beginning
c. There is only one communication at the end (no send/receive, only collectives)
d. Only process of rank 0 prints the result
3. Print the value of inside for each process. Do not forget to initialize the random generator differently for each process.
4. Compare the time for 1, 2 and 4 processes with a constant total number of random draw
5. Same with higher value of nb taking at least 2 seconds for 1 process
[bookmark: _nben9l97bmx3]Exercise 8: Contrast stretching [Multiple collectives][image:]
The goal is to stretch the contrast of images converted to grayscale.
1. Run the code in stretching-base.py
In this code, two different methods are used to stretch the contrast (f_one and f_two): Test both. You have to close the color picture to go to the next step. You have to close the gray picture to finish the execution.
2. Parallelize the code
· Only process with rank==0 loads and saves the image[image:]
· Compute max and min in parallel
· Use the stretch functions (f_one and f_two) in parallel
· Make it so that processes with an even rank use f_one, while processes with an odd rank use f_two
· Compare the time for 1, 2 and 4 processes
The result for the input image on the right (in color) should be like the one in grayscale for 4 processes.
[bookmark: _jieyxv72kldv]Exercise 9: Power of a matrix [Iterative use of collective operations]
We want to obtain the nth power of a square matrix. We assume that n and the matrix size N are known constants. The file mult.py contains an example of a sequential method. For information, you can manipulate numpy matrices in the same way as arrays. To create a matrix of size NxN containing only zeros, you can write mat=np.zeros((N, N)). The signature should be equal for your code and for the sequential code.
[bookmark: _ko4z3tx5fg6v]Exercise 10: Maximum number of divisors [Load balancing, performance evaluation]
The number of divisors of a number nb is the number of positive integers i such as
nb % i == 0
The goal of this exercise is to compute the maximum number of divisors for all numbers below N, i.e. for all nb from 1 to N.
For each version of the code (question 1., 2. and 3. below), print also the time needed to do the computation (both total time, and time to run the loop without the collective operation).
1. Run the sequential program primes.py
2. Implement the parallel version with blocks of work (only using collective operations)
	
	
	
	
	
	
	
	
	
	
	
	
	

3. Implement the parallel version by distributing the work one by one (only using collective operations)
	
	
	
	
	
	
	
	
	
	
	
	
	

4. Compare the time of each version and explain
[bookmark: _bzmcm7me0rrr]Exercise 11: Heat propagation [Point to point operation, performance evaluation]
[image:]
To compute heat propagation in a matrix representing an object, we have to apply the following formula for all points:

Vk+1(i,j) = (Vk(i-1, j) + Vk(i, j-1) + Vk(i, j) + Vk(i+1, j) + Vk(i, j+1)) / 5

The code in heat.py generates such a matrix and makes it evolve over several iterations (representing time).

Modify the code to make it run in parallel. Check the signature and plot time in function of the number of processes. You can use Send, Isend, Recv and Irecv functions for this sole exercise.

[bookmark: _pmalw3n1qlto]Exercise 12: C version [Generalization to another other language]
Compile and run all the code in the Labs/C directory. For example, to compile and run scatter.c:
1. mpicc scatter.c -o scatter
2. mpirun -n 4 scatter

Modify scatter.c to run on any number of nodes as the scatter code can only run on 4 nodes.

Write a C version of Position of the max (exercise 6).

image1.png

image2.png

image3.png

image4.png
olofofo]o 0|2 20
010 25 10| 0 2 (1229 12/ 2
025.250 5 5
01025 10| 0 2 (1229 122
ololofo]o 02 2|0

