# Exploring the Trade-offs between Energy and Performance of Federated Learning Algorithms

— First Year —

Presenter

Advisors

Mai Huong Do

Georges Da Costa Millian Poquet

IRIT - Université Toulouse III July 17, 2024





## Table of Contents

- Introduction
- Progress
- Working situation

## Introduction



### Thesis context

- ANR DELIGHT (aDvancing fEderated LearnIng while reducinG tHe carbon fooTprint) project:
  - Machine Learning (ML) is increasingly deployed across society.
  - <sup>1</sup>The amount of computations used to train learning models has increased 300,000 in 6 years.
  - Federated learning (FL) one of the most growing research in ML, requires a huge supply of <sup>2</sup>energy, which is difficult to meet in the current context.
- Target: incorporate energy efficiency as one of the metrics of FL to push FL towards sustainability.
- This thesis is one part of ANR DELIGHT project: explore the tradeoffs between energy and performance of FL algorithms.

Université Toulouse III - Paul Sabatier



<sup>&</sup>lt;sup>1</sup>Schwartz, Roy, et al. "Green ai." Communications of the ACM 63.12 (2020): 54-63.

<sup>&</sup>lt;sup>2</sup>communication and computation, etc.

## Objective and Planning

**Objective**: develop method for estimating energy, build a automatic framework to explore the trade-offs between Energy and FL performance.

#### Phases of the thesis:

- Set up an experimental environment on Grid'5000 (g5k) to gather performance and energy metrics.
  - Create a use-case for the Flower framework.
  - Build a reproducible and automated framework for obtaining metrics for this
    use case
- Propose, formulate energy model, and implement the different leverages.
- Explore the impact of the leverages on both energy and performance.

## Federated Learning framework



Step 1: Global model init.



Step 3: Local training



Step 2: Send model to clients



Step 4: Return and aggregate in global

## Flower-adapt



#### Solve the heterogeneous issues:

- Any workload
- Any ML framework
- Any programming language

### Grid'5000

- A large amount resources for experiment-driven research of computer science, includes: 10 sites, 72 clusters, 800 nodes, more than 15000 cores.
- Highly re-configurable and controllable.
- Advanced monitoring and measurement features.

Progress



## Context of survey

- Range of the survey: 2019 May 2024.
- Keywords: energy consumption, FL, trade-offs, performance.
- Current amount: 31 articles.
- Try to find reproducible works (at least open source).

# Classification by objectives

|     |      | Energy               |        |               |             | FL performance |      |            | Etc.       |           |          |          |
|-----|------|----------------------|--------|---------------|-------------|----------------|------|------------|------------|-----------|----------|----------|
| No. | Year | Scope of E Type of E |        |               | Acc.        | Loss           | Time | Carbon     | Bandwidth  | Computing | Memory   |          |
|     |      | Client               | Server | Communication | Computation | Acc.           | LUSS | processing | equivalent | Dandwidth | resource | resource |
| 1   | 2019 | ×                    |        | x             | ×           | ×              |      | ×          |            |           | ×        |          |
| 2   | 2020 | ×                    |        | x             |             |                | ×    |            |            |           |          |          |
| 3   | 2020 | ×                    |        | ×             | ×           |                | ×    | ×          |            |           | ×        |          |
| 4   | 2020 | ×                    |        | x             | ×           |                |      | ×          |            |           | ×        | ×        |
| 5   | 2020 | ×                    |        | x             | ×           | ×              |      |            |            |           |          |          |
| 6   | 2021 | ×                    | ×      | ×             | ×           |                | ×    |            | ×          |           |          |          |
| 7   | 2021 | ×                    |        | x             | ×           | ×              |      |            |            | ×         | ×        | ×        |
| 8   | 2021 | ×                    |        | x             | ×           |                | ×    | ×          |            |           |          |          |
| 9   | 2021 | ×                    |        | ×             | ×           | ×              |      | ×          |            | ×         | ×        |          |
| 10  | 2021 | ×                    |        | ×             | ×           |                | ×    | ×          |            | ×         | ×        |          |
| 11  | 2021 | ×                    |        | ×             | ×           | ×              |      | ×          |            |           | ×        |          |
| 12  | 2021 | ×                    |        | ×             | ×           |                |      |            |            | ×         | ×        |          |
| 13  | 2021 | ×                    |        |               | ×           |                | ×    | ×          |            |           |          | ×        |
| 14  | 2022 | ×                    |        | ×             | ×           |                | ×    | ×          |            | ×         | ×        |          |
| 15  | 2022 |                      |        | ×             | ×           | ×              |      |            |            |           |          |          |
| 16  | 2022 | ×                    |        | X             | ×           |                | ×    |            |            |           |          |          |
| 17  | 2022 | ×                    |        | X             | ×           |                | ×    | ×          |            | ×         | ×        |          |
| 18  | 2022 | ×                    |        | х             | x           |                | ×    | ×          |            |           | ×        |          |
| 19  | 2022 | ×                    |        | х             | x           |                |      |            |            |           |          |          |
| 20  | 2023 | ×                    | ×      | х             | x           | ×              |      |            |            |           |          |          |
| 21  | 2023 | ×                    | ×      | x             | ×           |                |      |            | ×          |           |          |          |
| 22  | 2023 | ×                    |        | ×             | ×           |                |      |            |            | ×         | ×        |          |
| 23  | 2023 | ×                    | ×      | ×             | ×           |                |      | ×          |            |           | ×        |          |
| 24  | 2023 | ×                    |        | ×             | ×           |                | ×    | ×          |            | ×         |          |          |
| 25  | 2023 | ×                    | ×      | ×             | ×           |                | ×    | ×          |            | ×         | ×        |          |
| 26  | 2023 |                      |        |               |             |                | ×    | ×          |            |           |          |          |
| 27  | 2023 | x                    |        | x             | ×           |                |      |            |            |           | ×        |          |
| 28  | 2024 | ×                    | ×      | ×             | ×           |                |      |            |            | ×         | ×        |          |
| 29  | 2024 | ×                    |        | ×             | ×           | ×              |      | ×          |            |           |          |          |
| 30  | 2024 | ×                    |        | x             | x           | ×              |      | ×          |            | ×         | ×        |          |

▶ See more

### Conclusion

- Confirming the correctness of our project direction, which considered not only computing but also communication costs.
- Lack of modeling energy consumption in server side.
- Carbon equivalent has not really been given due attention.
- Similar to memory resources (queuing delay) is the main cause of packet loss.

## **Implementation**

1. Run flower in g5k -----→ 2. Energy measurement by Expetator

▶ Set of sensors - see more

## **Implementation**



Flower implement - see more Set of sensors - see more

## **Implementation**





#### Results

| N.Round | N.Clients    | N.Server | Dataset | Time      | D. Loss |
|---------|--------------|----------|---------|-----------|---------|
|         | 10           |          |         |           |         |
| 1       | train: 2     | 1        | Cifar10 | 18.43 (s) | 1.4628  |
|         | evaluate: 10 |          |         |           |         |

```
do@hercule-1:/tmp/flower_hercule-1.lyon.grid5000.fr_1720791124_mojitos$ cat orion-3.lyon.grid5000.fr_flower_1720791142
#timestamp br0:rxp br0:rxb br0:txb br0:txb package-00 core0 dram1 package-11 core0 dram1 user nice system idle lowait irg softing steal guest guest nice
5470.965138854 0 0 0 0 0 0 6 6653 0 0 6256 0 0 0 2 0 0 0 0 0
5471.000093755 1 52 1 230 386470 101283 155967 381892 85506 130074 0 0 0 83 0 0 0 0 0
5471.100118439 1 52 1 230 659741 114557 348874 659939 104273 313079 0 0 0 240 0 0 0 0 0
5471.200127857 1 52 1 230 781896 157615 372128 711939 114511 314483 0 0 0 240 0 0 0 0 0
5471.300116694 1 52 1 230 500188 89580 350964 499089 57752 307860 0 0 0 240 0 0 0 0 0
5471.400108125 3 204 1 230 935681 209263 394008 850359 159339 320220 0 0 0 240 0 0 0 0 0
5471.500108552 1 52 1 230 627592 104304 331815 593872 72735 310531 0 0 0 240 0 0 0 0 0
5471.600098623 2 102 1 230 871888 195653 395595 841387 171317 322706 0 0 0 240 0 0 0 0 0
5471.700117289 1 52 1 230 617537 97895 336255 597472 76717 306961 0 0 0 240 0 0 0 0 0
5471.800109487 1 52 1 230 906966 204152 404841 841052 141213 320296 0 0 0 239 0 0 0 0 0
5471.900103810 1 52 1 230 640089 110621 349851 617094 89503 303268 0 0 0 241 0 0 0 0 0
5472.000116905 2 104 1 230 686106 121087 349042 662762 99833 316527 0 0 0 240 0 0 0 0 0
5472.100108144 0 0 0 0 658276 123575 377925 625227 92616 316405 0 0 0 239 0 0 0 0 0
5472.200116572 0 0 0 0 836383 159721 373699 818684 132867 303512 0 0 0 240 0 0 0 0 0
5472.300074911 0 0 0 0 808353 183981 379558 793889 161460 345472 0 0 0 240 0 0 0 0 0
5472.400112917 0 0 0 0 1078787 313231 424142 927976 188116 335371 0 0 0 240 0 0 0 0 0
5472.500123546 0 0 0 0 568909 95241 368668 539767 68866 311583 0 0 0 240 0 0 0 0 0
5472.600109562 0 0 0 0 546267 88160 347730 535952 67303 296494 0 0 0 240 0 0 0 0 0
5472.700101418 0 0 0 0 626433 108622 360730 612853 85064 317900 0 0 0 240 0 0 0 0 0
5472.800127284 0 0 0 0 619291 100123 351315 563112 70018 306045 0 0 0 240 0 0 0 0 0
5472 900126680 1 80 0 0 1163042 256517 376354 1129641 227024 324996 0 0 0 240 0 0 0 0 0 0
```

# Meeting among PhD/Master students

| Name    | Team/<br>Status Done works                                                                              |                                                                                                                                                                | On going/Open issues                                                                                                                                                                               | Remarks                                                                       |  |
|---------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Mai H   | - Finish a semi-automatic framework combining Flower + Energy measurement - Deploy and test in Grid5000 |                                                                                                                                                                | - Try to change clients per round (toward clients selection) - Stability needs attention Need to find a solution to the problem of waiting time and synchronization when running multiple clients. | - Violation when exceed<br>the day/night boundary<br>of Grid'5000<br>->Solved |  |
| Khaoula | LIA/<br>Master                                                                                          | - Working on client selection None                                                                                                                             |                                                                                                                                                                                                    | - Not yet evaluating<br>energy consumption<br>- Will leave after 1 month      |  |
| Ahmad   | LIA/<br>PhD                                                                                             | - Implementing and testing<br>FL schemes in the literature:<br>FedAvg, FedBN, FedDrop,<br>FedPMT and other variants<br>- Suggesting and testing new<br>schemes | None                                                                                                                                                                                               | - Not yet evaluating energy consumption                                       |  |
| Oumayma | LAAS/<br>PhD                                                                                            | Reducing the size of training data     Study the effect of data size on energy consumption                                                                     | How to measure the energy     Which type of energy should we consider     Violation when exceeding the limit of Grid'5000                                                                          | - Open issues were<br>solved during the<br>meeting                            |  |

#### Future works

- Framework automating & improving stability.
- Test with other FL strategies, multi-choice modification.
- Keep updating the survey and check their source code (framework).
- Propose a new idea to improve the framework of monitor energy consumption & FL performance.

Working situation



## Difficulties encountered

- Many quality publications in this area have been published, increasing competition.
- There is still a lack of professionalism in using tools to help systematize research.
- It's time to come up with a proposal.

### **Publications**

I have no one with SEPIA yet. However, I have 1 journal, 2 inter-confs, 1 domestic-conf during my Master's in Korea.

- Do, H. M., Tran, T. P., & Yoo, M. (2023). Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Industrial IoT in MEC Federation System. *IEEE Access*.
- <u>Do, H. M.</u>, & Yoo, M. (2023). Delay Optimization for Augmented Reality Service using Mobile Edge Computing Federation system. In 2023 14th International Conference on Information and Communication Technology Convergence (ICTC)
- Do, H. M., & Yoo, M. (2023). Energy Consumption Optimization in Mobile Edge Computing Federation based Deep Reinforcement Learning. In Korean Society of Communication Studies Conference Proceedings, 1834-1835.
- Do, H. M., & Yoo, M. (2022). Delay Optimization in Mobile Edge Computing Federation using Task Offloading and Resource Allocation. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 767-770). IEEE.

## Workshop



Deep Reinforcement Learning-based Task Offloading and Resource Allocation for Industrial IoT in MEC Federation System



#### Introduction

- Propose a task offloading and resource allocation framework for IIoT system with MEC federation
- Formulate an optimization problem for both energy consumption and latency of our system model.
- Propose the DDPG-PER-based-RA algorithm to solve the optimization problem.
- Conduct the simulation to evaluate the performance of our proposed.

#### Proposed system model & Problem Formulation



- <u>Objective</u>: Minimize the average energy-delay cost per task of whole system (IEs + fed servers) in T time slots.
- Constraints:
- i. Power allocate
- Memory resource allocate
   Bandwidth resource of wireless
   link allocate
- iv. Offloading decision

#### Methodology

■ Define State: status of current whole system

Action: resource allocation, task offloading decision
Reward: (each t) negative for the average cost per task

\* DDPG-PER-based-RA framework



#### Results



## **Teaching**

- No previous experience at a university.
- Plan to teach next semester (MPI, Monitors, or Petri network)

## Training (14H recorded)

- ASR day IRIT: PhD students present and discuss thesis topics (done).
- MOOC 1 (Reproducible research: methodological principles for transparent science): done
  - Understand the challenges and difficulties of reproducible research.
  - Gitlab for version tracking and collaborative work (used).
  - Notebook: Jupyter (used), RStudio, or Org-Mode (used).
  - Write a notebook to combine data analysis and its documentation effectively (COVID-19 analysis).
- MOOC 2 (Reproducible Research II: Practices and tools for managing computations and data): not finish.

# Thank you!



## Number



Figure: Number of Articles and Open source Frameworks Published Each Year

## Source code available

| Article | Proposal                                                                                                                                | Dataset                                                   | Language |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|
| 1       | Non-convex $	o$ decomposing sub problems                                                                                                | MNIST                                                     | Python   |
| 6       | Framework for the analysis of energy and carbon footprints                                                                              | MNIST<br>FL radar                                         | Python   |
| 11      | Transfer to convex $ ightarrow$ use Lagrange duality                                                                                    | MNIST                                                     | Matlab   |
| 12      | $Non\text{-convex} \to decomposing \; sub \; problems$                                                                                  | MNIST<br>FENIST<br>Synthetic                              | Python   |
| 15      | Closed-form expression for the expected convergence rate $\rightarrow$ the optimal power $\rightarrow$ optimize user selection and loss | MNIST                                                     | Matlab   |
| 22      | Framework for the analysis of energy and carbon footprints in distributed and FL                                                        | MNIST<br>CIFAR                                            | Python   |
| 27      | Intelligent Participant Selection (IPS): improve resource diversity Staleness-Aware Aggregation (SAA): improve resource efficiency      | CIFAR10, OpenImage<br>StackOverflow, Reddit,<br>GG speech | Python   |
| 28      | Pseudo-polynomial optimal solution Multiple-Choice Minimum-Cost Maximal Knapsack Packing Problem 4 algorithms for scenarios             | Generate                                                  | Python   |
| 30      | Pareto boundary for the convergence rate  Nash bargaining solution and analyzing the derived convergence rate                           | MNIST                                                     | Python   |





## Flower implement

Dataset Load data, define model training, evaluation, start client Client Script Follow strategy, number of rounds, start server Server Script Customize federated learning process Strategy Script



## Energy measurement - Expetator



<ロ > ∢回 > ∢回 > ∢差 > ∢差 > 差 め Q (♡)

# Energy measurement - Expetator

| rxp                          | number of received packets                          |  |  |  |
|------------------------------|-----------------------------------------------------|--|--|--|
| rxb number of received bytes |                                                     |  |  |  |
| txp number of sent packets   |                                                     |  |  |  |
| txb                          | number of sent bytes                                |  |  |  |
| package                      | entire sockets                                      |  |  |  |
| core0                        | or Power Plane 0, all processor cores on the socket |  |  |  |
| dram                         | RAM                                                 |  |  |  |
| idle                         | no activate status                                  |  |  |  |
| user                         | CPU                                                 |  |  |  |



