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ABSTRACT 

 

Energy – Delay Optimization  

in Mobile Edge Computing Federation 

 

DO MAI HUONG 

Department of Information and Communication Convergence 

Graduate School of Soongsil University 

Industrial IoT (IIoT) has seen remarkable growth with the advent of smart devices 

and 5G technology, yet faces limitations in device capabilities. To address resource 

constraints, computation offloading has emerged as a viable solution. Mobile edge 

computing (MEC) alleviates device workload, and MEC federation enhances 

resource utilization but encounters practical challenges. This thesis delves into 

decision offloading and computing resource allocation within the MEC federation 

system. Our proposition introduces a task offloading framework designed to 

minimize overall delay-energy expenses, while accounting for resource constraints 

within the MEC federation. This challenge is reformulated as a Markov Decision 

Process (MDP) and addressed through a resource allocation and task offloading 

algorithm that leverages the Deep Deterministic Policy Gradient (DDPG) 

technique and integrates the Prioritized Experience Replay (PER) buffer.. 

Simulation results demonstrate that DDPG-PER-IS effectively reduces the delay-

energy cost.  
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국문초록 

제어 모바일 에지 컴퓨팅 연합 시스템에서 에너지 지

연 최적화 연구 

무이후엉도 

정보통신융합학과 

숭실대학교 대학원 

산업용 IoT 는 스마트 기기와 5G 기술의 등장으로 괄목할 만한 성장을 이루었

지만 기기 성능에는 한계가 있습니다. 리소스 제약을 해결하기 위해 계산 오

프로딩이 실행 가능한 솔루션으로 등장했습니다. 모바일 에지 컴퓨팅는 장치 

작업 부하를 완화하고 MEC 페더레이션은 리소스 활용도를 향상시키지만 실

질적인 문제에 직면합니다. 본 논문에서는 모바일 에지 컴퓨팅는 연합 시스템 

내에서의 의사결정 오프로딩과 컴퓨팅 자원 할당에 대해 탐구합니다. 모바일 

에지 컴퓨팅는 연합의 자원 상황을 고려하여 총 지연 에너지 비용을 최소화하

는 것을 목표로 하는 작업 오프로딩 프레임워크를 제안합니다. 이 문제는 

Markov Decision Process 로 변환되고 Deep Deterministic Policy Gradient 및

Prioritized Experience Replay 버퍼를 기반으로 하는 자원 할당 및 작업 오프로

딩 알고리즘을 사용하여 해결됩니다. 시뮬레이션 결과는 DDPG-PER.
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CHAPTER 1 INTRODUCTION 

The Internet of Things (IoT) has rapidly expanded, particularly in Industrial IoT 

(IIoT), offering enhanced productivity and cost-efficiency in industries [1], [2]. 

IIoT projects are prevalent, with projections anticipating a global investment of 992 

billion by 2025. Despite its potential benefits, IIoT faces challenges due to data 

volume and device limitations. To address these constraints and cater to diverse 

application needs, developing technologies that optimize IIoT system performance 

is crucial. 

Cloud computing has been utilized in IIoT systems to tackle challenges, but its 

remote server deployment often results in increased latency. Mobile Edge 

Computing (MEC) emerges as a solution by deploying servers closer to IoT 

devices, reducing latency for intensive tasks. Figure 1-1 illustrates an IIoT system 

with an MEC server, enabling data acquisition and processing. Tasks can be 

managed locally by IIoT devices or offloaded to the MEC server. Research 

suggests leveraging dedicated MEC servers for low-latency tasks; otherwise, tasks 

might be rerouted to remote cloud servers, increasing latency and underutilizing 

nearby MEC resources [3], [4]. 
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[Figure 1-1] The IIoT-enabled MEC system. 

The concept of MEC federation [5], revolutionizes IIoT systems by establishing 

direct connections among MEC servers, optimizing resource utilization and 

workload allocation. However, prior studies faced constraints in formulating 

optimization problems. Some overlooked the computing abilities of IIoT devices [6] 

[7], relying excessively on MEC servers. Other studies assumed infinite storage 

within MEC servers, presenting practical challenges in decision-making during 

high-workload scenarios. Optimizing resource allocation and task offloading 

requires considering IIoT device capabilities while accounting for storage and 

queuing limitations in MEC servers. 

Managing energy consumption in IIoT devices is vital due to limited battery 

capacity. Studies aimed at optimizing both task processing latency and power usage 

in IIoT devices exist [8]. However, some research has limitations in modeling MEC 
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system energy consumption. While some studies focused on enhancing IIoT device 

energy efficiency, ignoring server power consumption, other studies emphasized 

server energy optimization but overlooked idle power consumption. Failure to 

optimize server power can result in financial setbacks. Therefore, it's vital to reduce 

energy usage in both IIoT devices and MEC servers while executing tasks to 

mitigate economic losses. 

Various methods, such as traditional optimization-based [4] and machine learning 

(ML)-based [8] have been proposed to address this challenge. While heuristic 

techniques like particle swarm optimization offer low complexity, they often trade 

performance for high-dimensional systems. Machine learning, particularly deep 

reinforcement learning (DRL), has gained traction in optimizing MEC resources. 

Techniques like deep Q-learning and DDPG have been employed to manage 

resources in MEC-enabled IIoT networks efficiently. DDPG, designed for 

continuous optimization problems, utilizes prioritized experience replay (PER) [9] 

and importance sampling (IS) to enhance performance and mitigate overfitting. 

In this research, we tackle crucial challenges by delving into the performance and 

resource optimization complexities within an MEC federation system integrated 

into an IIoT network. Our primary aim is to simultaneously tackle the issues of 

reducing latency and optimizing energy consumption across the entire IIoT system. 

Our approach involves considering the resources that are accessible or present 

within both the IEs and servers., incorporating computational capabilities, 

communication infrastructure, storage capacity, and power provisions across both 
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IEs and servers. These factors serve as inputs for the optimization problems we 

address. To tackle these issues effectively, we introduce a resource allocation and 

task offloading framework based on DDPG, enhanced with a PER buffer. Our 

study makes the following key contributions: 

• We introduce an innovative framework in IIoT systems with MEC 

federation to allocate resources and offload tasks, prioritizing end-to-end 

delay and energy efficiency, supported by a comprehensive objective 

function and queuing model. 

• We convert our MINLP-based optimization problem into a MDP and 

employ the DDPG-PER algorithm as a Deep Reinforcement Learning 

(DRL) approach within the MEC Federation controller to address this 

challenge. 

• We conduct thorough experiments, showcasing that our MEC federation 

system and the DDPG-PER method outperform other strategies, 

demonstrating superior effectiveness in IIoT systems.. 

The structure of this thesis is outlined as follows: 

• Chapter 2 outlines the proposed system model and optimization problem. 

• Chapter 3 details the resource allocation algorithm based on DDPG-PER 

used to address this problem. 

• Chapter 4 offers a presentation of the simulation results. 

• Finally, Chapter 5 summaries the findings and contributions of this thesis.  
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CHAPTER 2 SYSTEM AND PROBLEM STATEMENT 

2.1. System overview 

In Figure 2-1, an MEC-driven IIoT network displays IEs within fixed zones, 

connecting wirelessly to multiple strategically positioned MEC servers. These 

servers, part of an interconnected MEC federation, facilitate resource sharing and 

information exchange. A central MEC federation controller manages data 

aggregation and optimal resource allocation. IEs offload computation-intensive 

tasks to local MEC servers; however, resource constraints may prompt task transfer 

to remote MEC servers, orchestrated by the MEC federation controller. 

 

[Figure 2-1] The MEC-based IIoT system architecture. 

2.2. System model 

We designate the quantity of IE servers as D, and MEC servers as S. Our study 

involves dividing into T time slots. Within t, an IE d has Id(t) tasks, as outlined in a 

prior study [3]. In detail, we represent the task as a set: 
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𝑤𝑖
𝑑(𝑡) = {𝑎𝑖

𝑑(𝑡) , 𝑏𝑖
𝑑(𝑡), 𝑐𝑖

𝑑(𝑡)}, (1)  

here, 𝑎𝑖
𝑑(𝑡), 𝑏𝑖

𝑑(𝑡)and 𝑐𝑖
𝑑(𝑡) signify the data, result size, and the workload needed 

to execute the data unit. 

The determination of the offloading decision of the tasks is denoted by the variable 

𝑥𝑖
𝑑(𝑡). Specifically, 𝑥𝑖

𝑑(𝑡) = 0 signifies that the task is to be executed bby local 

device, while 𝑥𝑖
𝑑 = 𝑠 (0 < 𝑠 <  𝑆) shows that the task is being processed by the 

server s. The offloading strategy determines the task execution as follows: 

• 𝑥𝑖
𝑑(𝑡) = 0, for local IE 

• 𝑥𝑖
𝑑(𝑡) = 𝑠, for local server s, 

• 𝑥𝑖
𝑑(𝑡) = 𝑟 ≠ 𝑠, for remote server r. 

2.3. Delay model 

2.3.1. Delay of computation 

The delay incurred during task execution, whether locally on an equipment or on 

an offloaded server, is an inherent part of computation. The latency involved in 

processing the task on IE d (𝑇𝑖
𝑑(𝑡)) can be computed using the following formula: 

𝑇𝑖
𝑑(𝑡) =

𝑎𝑖
𝑑(𝑡)𝑐𝑖

𝑑(𝑡)

𝑓𝑖
𝑑(𝑡)

, (2)

here, 𝑓𝑖
𝑑(𝑡) represents the computational resource, which is allocated by device to 

execute the task 𝑤𝑖
𝑑(𝑡)  during t. The delay of the computational task 𝑤𝑖

𝑑(𝑡) 

performed on server s is calculated by the formula: 

𝑇𝑖
𝑠(𝑡) =

𝑎𝑖
𝑑(𝑡)𝑐𝑖

𝑑(𝑡)

𝑓𝑖
𝑠(𝑡)

, (3) 
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where 𝑓𝑖
𝑠(𝑡)  is the computational resource, which is allocated by server s to 

process 𝑤𝑖
𝑑(𝑡) within time slot t. 

2.3.2. Delay of transmission 

This study focuses on a network utilizing two types of communication: wireless 

connections for communication between IEs and MEC servers, and a wired 

network linking MEC servers among themselves. For both types of connections, 

we define uplink and downlink channels. The uplink handles task data transmission, 

while the downlink manages the transmission of resulting data. 

The gain of the channel wireless link between device and server is denoted by 𝐺𝑑,𝑠 

and calculated using the formula: 

𝐺𝑑,𝑠 = 127 + 30 log(𝑑𝑖𝑠𝑡𝑑,𝑠), (4) 

where 𝑑𝑖𝑠𝑡{𝑑,𝑠}  represents the distance. Consequently, the data rate of uplink 

𝑅{𝑑,𝑠}
𝑈 (𝑡) and downlink 𝑅{𝑑,𝑠}

𝐷 (𝑡) between device and server s during t are derived 

using Shannon's formula: 

𝑅{𝑑,𝑠}
𝑈 (𝑡) = 𝐵{𝑑,𝑠}

𝑈 (𝑡) log2 (1 +
𝑃𝑑(𝑡) 𝐺{𝑑,𝑠}

𝑁0𝐵{𝑑,𝑠}
𝑈 (𝑡)

) , (5) 

𝑅{𝑑,𝑠}
𝐷 (𝑡) = 𝐵{𝑑,𝑠}

𝐷 (𝑡) log2 (1 +
𝑃𝑠(𝑡)𝐺{𝑑,𝑠}

𝑁0 𝐵{𝑑,𝑠}
𝐷 (𝑡)

) , (6) 

here, 𝐵{𝑑,𝑠}
𝑈 (𝑡) and 𝐵{𝑑,𝑠}

𝐷 (𝑡) denote the bandwidths which are allocated to the up 

and down link between device and server s. 𝑃𝑑(𝑡)  and 𝑃𝑠(𝑡) represent the 

transmission power, which are allocated by device and server s, while 𝑁0 signifies 

Gaussian noise. 
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The data transmission rate of the wired network, on the other hand, correlates to the 

connection bandwidth. Therefore, the data rate of up and down link 𝑊{𝑠,𝑟}
𝑈 (𝑡) and 

𝑊{𝑠,𝑟}
𝐷 (𝑡) in wired from server s to MEC r during t are simply: 

𝑊{𝑠,𝑟}
𝑈 (𝑡) =  𝐵{𝑠,𝑟}

𝑈 (𝑡), (7) 

𝑊{𝑠,𝑟}
𝐷 (𝑡) =  𝐵{𝑠,𝑟}

𝐷 (𝑡), (8) 

where 𝐵{𝑠,𝑟}
𝑈 (𝑡) and 𝐵{𝑠,𝑟}

𝐷 (𝑡) are the uplink bandwidth and downlink bandwidth of 

link between server s and server r. 

Uplinks from device to local server and between two servers are utilized for task 

data transmission. 𝑇{𝑈,𝑅}{𝑑,𝑠}(𝑡) and 𝑇{𝑈,𝑊}{𝑠,𝑟}(𝑡) are the transmission delay of the 

wireless (device to server) and wired (server to server) in the uplink, they are 

computed as follows: 

𝑇{𝑈,𝑅}{𝑑,𝑠}(𝑡) =
𝑎𝑖(𝑡)

𝑑

𝑅𝑈{𝑑,𝑠}(𝑡)
, (9) 

𝑇{𝑈,𝑊}{𝑠,𝑟}(𝑡) =
𝑎𝑖(𝑡)

𝑑

𝑊𝑈{𝑠,𝑟}(𝑡)
, (10) 

where 𝑎𝑖
𝑑(𝑡) represents the size of the task data. 

Similar, the transmission delays of the two downlinks are: 

𝑇{𝐷,𝑅}{𝑑,𝑠}(𝑡) =
𝑏𝑖

𝑑(𝑡)

𝑅𝐷{𝑑,𝑠}(𝑡)
, (11) 

𝑇{𝐷,𝑊}{𝑠,𝑟}(𝑡) =
𝑏𝑖

𝑑  (𝑡)

𝑊𝐷{𝑠,𝑟}(𝑡)
, (12) 

where 𝑏𝑖
𝑑(𝑡) represents the size of the task results. 

2.3.3. Delay of queuing 
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The server utilizes a task buffer to store the new coming tasks that waiting to 

process. In this model, task arrivals follow a Poisson distribution, while 𝑐 = 4 

denoting the number of cores [10]. Considering 𝜆𝑠 as the tasks average arrival rate 

and 𝛽𝑠 as the MEC server's service rate, the M/M/4/𝑆𝐶𝑠 defines the probability 𝑃𝑖 

that i tasks exist within the buffer [11]. Consequently, the queue delay 𝑇𝑠
𝑞(𝑡) as 

follows: 

𝑇{𝑠,𝑖}
𝑞 (𝑡) =

{𝑆𝐶}{𝑠}(𝑡) − {𝑆𝐴}{𝑠}(𝑡)

𝜆𝑠(1 − 𝑃{𝑆𝐶𝑠})
, (13) 

here, 𝑆𝐶𝑠(𝑡) represents the capacity of server s at time slot t, while 𝑆𝐴𝑠(𝑡) denotes 

the available storage within the server at that time. The difference between 𝑆𝐶𝑠(𝑡) 

and 𝑆𝐴𝑠(𝑡) , i.e., 𝑆𝐶𝑠(𝑡) − 𝑆𝐴𝑠(𝑡) , indicates the number of tasks awaiting 

execution in the queue. 𝑃𝑆𝐶
𝑠   stands for the probability that a total of 𝑆𝐶𝑠 tasks are 

present in the queuing line. 

2.4. Energy consumption model 

2.4.1. Energy consumption of computation 

The power which is used by device and server s when executing task 𝑤𝑖
𝑑(𝑡) in each 

time t is represented by [12]: 

𝑝𝑖
{𝑑}(𝑡) = 𝜉 [𝑓𝑖

{𝑑}(𝑡)]
3

, (14) 

𝑝𝑖
{𝑠}(𝑡) = 𝜉 [𝑓𝑖

{𝑠}(𝑡)]
3

, (15) 

here, 𝜉  represents the effective parameters, which relies on the hardware 

architecture. Consequently, the energy of device or server s  which consumed is as: 
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𝐸𝑖
{𝑑}

(𝑡) = 𝑝𝑖
{𝑑}

(𝑡)𝑇𝑖
{𝑑}

(𝑡), (16) 

𝐸𝑖
{𝑠}(𝑡) = 𝑝𝑖

{𝑠}(𝑡)𝑇𝑖
{𝑠}(𝑡). (17) 

2.4.2. Energy for transmission and reception 

Certainly, the transmission energy required by each IE or MEC server for 

offloading or migrating tasks is a crucial consideration. As a result, 𝐸{𝑈,𝑅}{𝑑,𝑠}(𝑡) 

and 𝐸{𝑈,𝑊}{𝑠,𝑟}(𝑡) denote the energy consumption which used for transmission in 

uplink between device to server and server to server. They are calculated as follows: 

𝐸{𝑈,𝑅}{𝑑,𝑠}(𝑡) = 𝑇{𝑈,𝑅}{𝑑,𝑠}(𝑡)𝑃𝑑(𝑡) + 𝑇{𝑑,𝑠}
{𝑈,𝑅}(𝑡)𝑃𝑠(𝑡), (18) 

𝐸{𝑈,𝑊}{𝑠,𝑟}(𝑡) = 𝑇{𝑈,𝑊}{𝑠,𝑟}(𝑡)𝑃𝑠(𝑡) + 𝑇{𝑠,𝑟}
{𝑈,𝑊}

(𝑡)𝑃𝑟(𝑡). (19) 

Meanwhile, IE or MEC servers require energy to remain in an active "on" state, 

capable of receiving tasks or results. 𝐸{𝐷,𝑅}{𝑑,𝑠}, (𝑡) and 𝐸{𝐷,𝑊}{𝑠,𝑟}(𝑡) represent the 

energy consumption which used for transmission in the downlink between server to 

device and server to server. They are calculated as follows: 

𝐸{𝐷,𝑅}{𝑑,𝑠}(𝑡) = 𝑇{𝐷,𝑅}{𝑑,𝑠}(𝑡)𝑃𝑑(𝑡) + 𝑇{𝑑,𝑠}
{𝐷,𝑅}

(𝑡)𝑃𝑠(𝑡), (20) 

𝐸{𝐷,𝑊}{𝑠,𝑟}(𝑡) = 𝑇{𝐷,𝑊}{𝑠,𝑟}(𝑡)𝑃𝑠(𝑡) + 𝑇{𝑠,𝑟}
{𝐷,𝑊}(𝑡)𝑃𝑟(𝑡). (21) 

These equations represent the energy consumption required for both transmitting 

data and keeping the devices active in the "on" mode for receiving tasks or results 

across various connections in the IIoT system. 

2.5. Energy - Delay cost 



 

-11- 

Our scenario adversely impacts system latency and power consumption. Hence, 

there is a critical need to optimize both latency and energy with the trade-off 

concurrently. The investigation involves considering three offloading strategies. 

Rather than focusing solely on an "offload or not" strategy. Such an approach not 

only simplifies the choice of "offload or not" but also addresses the challenge of 

"offload to which one." 

2.5.1. First case – on device 

In this scenario, the tasks 𝑤𝑖
𝑑(𝑡) are exclusively executed by device d and are not 

delegated to any server ( 𝑥𝑖
𝑑(𝑡) = 0 ). The delay experienced by each device 

encompasses the computing delay required for all tasks, while energy refers to the 

energy utilized for task execution. The energy-delay cost associated with task 

𝑤𝑖
𝑑(𝑡) is as below: 

𝐶𝑖
𝑑(𝑡) = 𝛼. 𝐴. 𝑇𝑖

𝑑(𝑡) + 𝛽. 𝐵. 𝐸𝑖
𝑑(𝑡), (22) 

here, 𝛼  and 𝛽  serve as constant weighting parameters representing the relative 

importance of delay and energy costs for the task, respectively. 𝐴 and 𝐵 denote 

values used for normalizing the value. 

2.5.2. Second case – local server 

The local server s is 'local' if it satisfies 𝑑𝑖𝑠𝑡{𝑑,𝑠} ≤ 𝑅, where 𝑅 represents radius of 

each MEC server covers. 

In this scenario, the tasks are fully executed by local server. Specifically, 𝑥𝑖
𝑑(𝑡) = 𝑠, 

implying that s denotes the local server connected to IE d by directly wireless link. 

There are three distinct kinds of delays: 
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• Delay for transmission 

• Delay for computation 

• Queuing delay 

According to above equations the overall delay for computing task 𝑤𝑖
𝑑(𝑡) in t is as 

follows: 

𝑇𝑖
{𝑙𝑜𝑐}

(𝑡) = 𝑇𝑖
𝑠(𝑡) + 𝑇{𝑑,𝑠}

{𝑈,𝑅}
(𝑡) + 𝑇{𝑑,𝑠}

{𝐷,𝑅}
(𝑡) + 𝑇𝑠

𝑞(𝑡). (23) 

Energy consumption is categorized as: 

• Transmission energy 

• Reception energy 

• Computation energy 

Based on above equations, the total energy consumption is as: 

𝐸𝑖
{𝑙𝑜𝑐}(𝑡) = 𝐸𝑖

𝑠(𝑡) + 𝐸{𝑑,𝑠}
{𝑈,𝑅}(𝑡) + 𝐸{𝑠,𝑑}

{𝑈,𝑅}(𝑡) + 𝐸{𝑑,𝑠}
{𝐷,𝑅}(𝑡) + 𝐸{𝑑,𝑠}

{𝐷,𝑅}(𝑡). (24) 

The energy-delay cost can be expressed as: 

𝐶𝑖
{𝑙𝑜𝑐}(𝑡) = 𝛼. 𝐴. 𝑇𝑖

{𝑙𝑜𝑐}(𝑡) + 𝛽. 𝐵. 𝐸𝑖
{𝑙𝑜𝑐}(𝑡). (25) 

2.5.3. Third case – remote server 

A remote server processes the task when 𝑥𝑖(𝑡)
𝑑 = 𝑟 ≠ 𝑠, where r represents a server, 

which is not directly linked to device d. This approach considers three kinds of 

delays: 

• Transmission delay 

• Computation delay 

• Queuing delay 
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The delay experienced by the remote server r is formulated as: 

𝑇𝑖
{𝑟𝑒𝑚}(𝑡) = 𝑇{𝑑,𝑠}

{𝑈,𝑅}(𝑡) + 𝑇{𝑠,𝑟}
{𝑈,𝑊}(𝑡) + 𝑇𝑟

𝑞(𝑡) + 𝑇𝑖
𝑟(𝑡) + 𝑇{𝑠,𝑟}

{𝐷,𝑊}(𝑡) + 𝑇{𝑑,𝑠}
{𝐷,𝑅}(𝑡). (26) 

Moreover, energy consumption is categorized into: 

• Transmission and reception energy 

• Computation energy 

The energy consumption in the case tasks executed by the remote server r 

considers various energy components: 

𝐸𝑖
{𝑟𝑒𝑚}(𝑡) = 𝐸{𝑑,𝑠}

{𝑈,𝑅}(𝑡) + 𝐸{𝑠,𝑟}
{𝑈,𝑊}(𝑡) + 𝐸𝑖

𝑟(𝑡) + 𝐸{𝑠,𝑟}
{𝐷,𝑊}(𝑡) + 𝐸{𝑑,𝑠}

{𝐷,𝑅}(𝑡). (27) 

So, the energy-delay cost 𝐶𝑖
{𝑟𝑒𝑚𝑜𝑡𝑒}(𝑡) is formulated as: 

𝐶𝑖
{𝑟𝑒𝑚}(𝑡) = 𝛼. 𝐴. 𝑇𝑖

{𝑟𝑒𝑚}(𝑡) + 𝛽. 𝐵. 𝐸𝑖
{𝑟𝑒𝑚}(𝑡). (28) 

2.6. Problem formulation 

Based on the outlined scenarios, the energy-delay cost function, expressed as ℂ𝑖
𝑑(𝑡), 

is defined as follows: 

ℂ𝑖
𝑑(𝑡) =  {

𝐶𝑖
𝑑(𝑡), 𝑥𝑖

𝑑(𝑡) = 0

𝐶𝑖
𝑙𝑜𝑐(𝑡), 𝑥𝑖

𝑑(𝑡) = 𝑠

𝐶𝑖
𝑟𝑒𝑚(𝑡), 𝑥𝑖

𝑑(𝑡) = 𝑟 ≠ 𝑠

 

The primary target of this research aims to get the minimum of the average energy-

delay cost across the entire system spanning T time slots, incorporating both 

devices and servers, while satisfy the resource and stringent delay constraints. This 

objective function is formulated as an optimization problem: 

min
𝑥𝑖

𝑑(𝑡)
∑ ∑ ∑

1

𝑇

𝐼𝑑

𝑖=1

1

𝐷

𝐷

𝑑=1

1

𝐼𝑑

𝑇

𝑡=1

ℂ𝑖
𝑑(𝑡) (29) 
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The objective function works under the list of constraints below: 

Constraint 1: Offloading strategy decision is only one option in one time 

0 ≤ 𝑥𝑖
𝑑(𝑡) ≤ 𝑆 

Constraint 2: Limited transmission power  

𝑝𝑚𝑖𝑛(𝑡) ≤  𝑝𝑑 (𝑡) ≤ 𝑝𝑚𝑎𝑥(𝑡), 𝑝𝑚𝑖𝑛(𝑡) ≤  𝑝𝑠 (𝑡) ≤ 𝑝𝑚𝑎𝑥(𝑡) 

Constraint 3: Limited bandwidth 

∑ 𝐵𝑑,𝑠
𝑈𝑝

≤ 𝐵𝑚𝑎𝑥
𝑈𝑝

𝐷

𝑑=1

, ∑ 𝐵𝑑,𝑠
𝐷𝑜𝑤𝑛 ≤ 𝐵𝑚𝑎𝑥

𝐷𝑜𝑤𝑛

𝐷

𝑑=1

 

Constraint 4: Limited storage (caching) resource 

𝑆𝐴𝑠(𝑡) ≥ ∑ 𝑆𝑑 (𝑡);

𝐷

𝑑=1

𝑆𝑑 (𝑡) ≥ 0 

Constraint 5: Limited computing resource 

𝐹𝐴𝑠(𝑡) ≥ ∑ 𝑓𝑖
𝑠(𝑡);

𝐷

𝑑=1

𝑓𝑖
𝑠(𝑡) ≥ 0 

𝐹𝐴𝑑(𝑡) ≥ ∑ 𝑓𝑖
𝑑(𝑡);

𝐷

𝑑=1

𝑓𝑖
𝑑(𝑡) ≥ 0 

Constraint 6: Limited battery of IE [13] 

𝐸𝐴𝑑(𝑡) ≥ ∑ 𝐸𝑖
𝑑(𝑡);

𝐷

𝑑=1

 

𝐶𝑖(𝑡)
{𝑙𝑜𝑐}

= 𝛼 ⋅ 𝐴 ⋅ 𝑇𝑖(𝑡)
{𝑙𝑜𝑐}

+ 𝛽 ⋅ 𝐵 ⋅ 𝐸𝑖(𝑡)
{𝑙𝑜𝑐}

 

In the subsequent section, we will demonstrate how the optimization problem 

defined above exhibits characteristics akin to those of a MINLP problem.  
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CHAPTER 3 METHODOLOGY 

The framework of resource allocation and tasks offloading strategies in an IIoT 

network's MEC federation is presented in this section. Initially modeled as a MDP 

in optimization problem above, DDPG emerges as a suitable solution due to its 

adaptability to dynamic states and large data dimensions. However, DDPG's 

complexity during training prompts the proposal of a hybrid solution combining 

DDPG with PER. This hybrid approach aims to enhance training efficiency and 

mitigate complexity issues. Our framework utilizes DDPG-PER to optimize energy 

and latency in an MEC-enabled IIoT network. 

3.1. Markov Decision Process 

To implement DRL to tackle the optimization problem, we define the key 

components of a MDP, encompassing five crucial elements: the state space 𝑆 , 

reward function 𝑅, action space 𝐴, discount factor 𝛾, state transition probability 𝑃. 

As each time slot t commences, the agent is tasked with selecting an action 𝑎𝑡 ∈  𝐴 

based on the current system state 𝑠𝑡 ∈  𝑆. Following this action, the environment 

undergoes an update to the subsequent state 𝑠{𝑡+1}  of the system, providing a 

reward as feedback to gauge the efficacy of the chosen action. Through this 

continual interaction between the agent and the environment, the agent can 

formulate a policy that serves as a mapping from states to actions. 

• State space:  

The system state at time slot t is represented as: 
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𝑠𝑡 = {𝐾(𝑡), 𝐷(𝑡), 𝐸(𝑡), 𝐹(𝑡), 𝑆(𝑡)}, 

with,  

𝐾(𝑡): location of tasks, 

𝐷(𝑡): size of tasks, 

𝐸(𝑡): available power, 

𝐹(𝑡): available computing resources,  

𝑆(𝑡): available storage resources. 

• Action space: 

The agent makes the decision follows below set: 

𝑎𝑡 = {𝑃(𝑡), 𝑓(𝑡), 𝐵(𝑡), 𝑠(𝑡), 𝑋(𝑡)}, 

where, 

𝑋(𝑡): indicates all task offloading decisions,  

𝑃(𝑡): allocated power resources, 

𝑓(𝑡): allocated computing resources, 

𝐵(𝑡): allocated bandwidth resources, 

𝑠(𝑡): allocated storage resources. 

• Reward function: 

The reward 𝑟𝑡 reflects the immediate benefit obtained upon taking action 

𝑎𝑡 within the state 𝑠𝑡. In line with the goal of minimizing the energy-delay 

cost, the reward 𝑟𝑡 at t is structured to represent the negative value of the 

average cost of IE tasks. 
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𝑟𝑡 = − ∑ ∑
1

𝐷

𝐼𝑑

𝑖=1

𝐷

𝑑=1

1

𝐼𝑑
ℂ𝑖

𝑑(𝑡). (30) 

3.2. DDPG – PER framework 

The DDPG framework involves four neural networks: the actor network (𝜃𝜇) aims 

to refine the policy 𝜇(𝜃𝜇) to choose the best actions for specific states. The critic 

network (𝜃𝑄 ) assesses action quality through 𝑄 -values. Furthermore, delayed 

target networks, 𝜃𝜇′  and 𝜃𝑄′  are employed to maintain stable estimated targets, 

thereby improving training stability and learning effectiveness.  

The DDPG-based framework includes four networks, corresponding four trainable 

parameters: 

• 𝜃𝜇: presents actor network – uses Deterministic Policy Gradient function, 

proposes an action given a state by policy. 

• 𝜃𝑄: present critic network – uses Deep Q network, predicts if the action is 

good or bad given a state and an action. 

• 𝜃𝜇′
: target actor network, the time-delayed copies of original actor network, 

that slowly tracks and improves the learned network. 

• 𝜃𝑄′
: target critic network, the time-delayed copies of original critic 

network, that slowly tracks and improves the learned network. 

The process includes three phases: 

• Update critic network, find the 𝑄-value, the parameter measures how good 

the action. Based on Bellman’s equation, the 𝑄-value is: 
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𝑄𝜇(𝑠𝑡 , 𝑎𝑡) = 𝐸[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜇𝑡+1)]. (31) 

• Update actor network, optimize the policy and find the action. 

• Update two target networks. 

Details of whole process is shown in Figure 3-1. 

 

[Figure 3-2] The DDPG-PER framework. 

The output of actor network and critic network are: 

𝜇(𝑠𝑡|𝜃𝜇) ≈ 𝜇∗(𝑠𝑡), (32) 

𝑄(𝑠𝑡 , 𝑎𝑡|𝜃𝑄) ≈ 𝑄(𝑠𝑡 , 𝑎𝑡). (33) 

Update Q-value by one step od gradient descent using: 

𝐿(𝜃𝑄) =  
1

𝑀
𝛿2, (34) 

with  

𝛿 = 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄) −  𝑦𝑖 . (35) 
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Update policy by one step of gradient ascent using [14], [15]: 

∇{𝜃𝜇}𝐽{𝜇∗} =
1

𝑀
 ∑ ∇{𝑎𝑖}

𝑀

𝑖=1

 [𝑄𝜇(𝑠𝑖, 𝑎𝑖|𝜃𝑄)∇{𝜃𝜇𝜇(𝑠𝑖|𝜃𝜇
)}] . (36) 

Update target network with: 

𝜃{𝜇′} ← (1 − 𝛿)𝜃{𝜇′} + 𝛿𝜃𝜇 , (37) 

 𝜃{𝑄′} ← (1 − 𝛿)𝜃{𝑄′} + 𝛿𝜃𝑄 . (38) 

On the other hand, PER in DDPG assigns accurate values to experiences using TD-

error metrics, avoiding overfitting through stochastic prioritization and correcting 

state visitation bias with importance-sampling weights. The probability of sampling 

experience j is determined as: 

𝑃(𝑗) =
𝐷𝑗

𝑢

∑ 𝐷𝑖
𝑢

𝑖
, (39) 

with 𝐷𝑗 is the priority of experience 𝑗. 

The IS weight stabilizes training by reducing gradient magnitude, computed as 

detailed in \cite{mahmood2014weighted}: 

𝑤𝑗 =
1

𝑉{𝑣}. 𝑃(𝑗)𝑣
. (40) 

The loss function is reformulated as below: 

𝑤𝑗∇
{𝜃1

𝑄
}
𝐿(𝜃1

𝑄
) = 𝑤𝑗𝛿𝑗∇

{𝜃1
𝑄

}
. 𝑄(𝑠, 𝑎|𝜃1

𝑄
). (41) 
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CHAPTER 4 EXPERIMENTS 

4.1. Simulation requirement 

The simulation runs on a PC with the configuration as below: 

• Windows 11 (64-bit) 

• 2.60 GHz Intel(R) Core(TM) i5-11400F 

• RAM 16 GB 

The simulation environment uses Anaconda and Microsoft Visual Studio IDE, 

details of the package used are as follows: 

• Python 3.7 

• Tkinter 8.6 

• Tensorflow 2.6 

4.2. Simulation setting 

This study investigated an IIoT network empowered by Mobile Edge Computing 

wherein multiple MEC servers collaborate. The system comprises ten industrial 

zones, each with a radius of 500 meters, with a single MEC server covering each 

zone. IIoT devices are randomly positioned within these areas and connect 

exclusively to the local MEC server of their respective region. The system's 

connections comprise wireless links connecting the IE to the local MEC server, 

along with wired connections among the MEC servers. Within the DDPG-PER 

model, the objective is to optimize task offloading and resource allocation to 

minimize energy-delay costs. The model consists of four 5-layer networks that 
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continually update during system operation, adapting to changing environments. 

Using exponential moving average (EMA) models, training parameters are 

adjusted based on parameter trends. Both batch and mini-batch sizes are set to 32, 

and training commences as the memory fills with samples, which are explored to 

form the dataset used for learning. Based on similar simulations [16] main 

parameters are shown in Table 4-1.  

[Table 4-2] Setting parameters. 

Parameters Value 

Number of servers 

Number of devices 

Wireless bandwidth device – server 

Wired full bandwidth server – server 

Buffer size 

CPU capacity of device 

CPU capacity of server 

Task size 

Transmission power range 

Workload requirement of 1 bit task 

Time executed requirement of 1 bit task 

Batch size  

Mini batch size 

Replay memory size 

Total episode 

10 

{10, 20, 30, 40} 

[0, 20] MHz 

[0, 150] MBps 

[0, 25] GB 

[0, 5] GHz 

[0, 25] GHz 

1 MB 

1 MB 

737.5 cycles 

2.10-8 s 

32 

32 

10000 

100 

 

4.3. Testing cases 
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Base on the type of MEC federation systems: 

• MEC Federation greedy: only after the most recent location is overloaded 

may tasks be completed by IEs, local MEC, or distant MEC. 

• MEC federation optimal: tasks can be executed by IEs, local MEC or 

remote MEC to get the optimal energy-delay cost. 

Base on the resource allocation & task offloading decision-making methods: 

• DDPG-PER: making the best decision regarding resource allocation and 

task offloading to get the optimal point. 

• Random: the resources for both IEs and MEC servers are assigned at 

random, and the task offloading choice is made by the DDPG-PER. 

• Uniform: following the allocation of resources for both IEs and MEC 

servers, the task offloading choice specified by the DDPG-PER is made. 

Besides, we also change the variables of the number of IEs to evaluate the effect 

when increasing the number of IEs: 10, 20, 30, 40. 

4.3.1. Delay performance comparison 

Table 4-3 illustrates the comparison of average execution delays across various 

algorithms. As the number of IEs in the system increases, task completion latency 

rises across all methods due to resource exhaustion. Specifically, in a system with 

10 IEs utilizing DDPG-PER, task latency is 0.86 seconds, slightly lower than the 

latency observed in greedy MECF at 0.90 seconds. Similar patterns are evident in 

URA and RRA methods. MEC federation is instrumental in addressing task 



 

-23- 

management challenges in IIoT systems, with optimal MECF showcasing the most 

efficient strategy to minimize latency. 

[Table 4-4] Average of delays (s) 

Number of devices 40 30 20 10 

RRA 

Greedy 5.26 3.35 2.4 1.47 

Optimal 4.52 2.78 2.32 1.43 

URA 

Greedy 4.98 3.56 2.14 1.27 

Optimal 4.46 3.4 2.11 1.14 

DDPG - PER 

Greedy 3.85 2.94 1.94 0.9 

Optimal 3.37 2.68 1.73 0.86 

 

Furthermore, DDPG-PER consistently better than other methods in optimizing 

delay. As indicated in Table 4-5, the proposed method consistently exhibits reduced 

delays across settings compared to RRA and URA. In the case of 40 IEs, where 

tasks are solely managed within IEs, the latencies for RRA, URA, and DDPG-PER 

are 18.5s, 17.98s, and 17.28s, respectively. When local MEC servers handle 

ongoing MEC tasks, the minimum latency for RRA, URA, and DDPG-PER drops 

to 5.58s, 5.51s, and 4.12s, respectively. When using optimal strategy, the average 

task latency for RRA and URA is 4.52s and 4.46s, respectively, whereas that of 

DDPG-PER stands at 3.37s. This underscores the superior effectiveness of system 

when using DDPG-PER in minimizing latency. 

4.3.2. Energy performance comparison 
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In addition to studying system latency, we evaluate power consumption 

optimization performance, as depicted in Table 4-6. Similar to latency, the quantity 

of IEs within the system plays a significant role in determining energy 

consumption. For example, in a scenario involving an IIoT configuration 

containing 10 IEs implementing RRA, the average power utilization for tasks using 

Optimal MECF and Greedy MECF stands at 40.1 J and 42.8 J, respectively. This 

pattern remains consistent even as the quantity of IEs grows., indicating that 

Greedy MECF consumes more energy per task compared to Optimal MECF. 

Notably, when considering RRA and URA alongside MEC federation, the 

combined energy usage surpasses that of DDPG-PER, highlighting the inefficiency 

of these methods in the MEC federation system. 

[Table 4-7] Average energy performance (J) 

Number of devices 40 30 20 10 

RRA 

Greedy 173.8 131.2 81.5 42.8 

Optimal 159.9 124.8 75.2 40.1 

URA 

Greedy 135.8 104.3 66.3 31.2 

Optimal 123 95.9 59.2 30.5 

DDPG - PER 

Greedy 108.8 85.4 58 27.3 

Optimal 105.2 81.1 51.3 25.7 

 

4.3.3. Energy – Delay cost performance comparison 
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The utilization of DDPG-PER in Optimal MECF stands out for delivering optimal 

performance by concurrently optimizing both latency and power consumption. The 

tasks managed by Optimal MECF consistently demonstrate the lowest average 

energy-delay cost, showcasing the effectiveness of DDPG-PER in achieving 

efficiency across latency and power consumption metrics simultaneously, as shown 

in Table 4-8. This advantage is obtained by using the computing capabilities and 

available resources of MEC servers throughout the whole network, rather than just 

processing using a greedy technique. The average energy-delay cost for each job 

completed by Greedy MECF and Optimal MECF in a system with 10 IEs using 

RRA is 140 and 134. Similarly to RRA, URA's resource allocation for the 10-IE 

system resulted in expenses of 114 and 105 when activities were only executed 

with Greedy MECF and Optimal MECF, respectively. 

[Table 4-9] Average Energy – Delay cost 

Number of devices 40 30 20 10 

RRA 

Greedy MECF  524.2388 356.029 241.572 140.2746 

Optimal MECF  461.8816 312.6484 229.6496 134.7994 

URA 

Greedy MECF  465.2844 340.4128 208.5212 114.9506 

Optimal MECF  418.1908 321.104 198.9338 105.8772 

DDPG - PER 

Greedy MECF  363.827 280.3332 186.7612 87.066 

Optimal MECF  329.2286 259.0544 166.0894 82.7788 
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Additionally, across various experimental setups, DDPG-PER consistently 

demonstrates superior performance compared to other methodologies. When 

managing a network of 40 IIoT devices within the MEC federation system, 

resource allocation through RRA and URA results in average expenses of 461 and 

418, respectively, whereas utilizing DDPG-PER incurs costs of 329. 

Correspondingly, with 20 IEs present, the energy-delay expenses for RRA, URA, 

and DDPG-PER systems are 229, 198, and 166, respectively. The limitations 

observed in RRA and URA stem from their constraints in resource allocation 

methods, including RRA's reliance on randomization and URA's tendency toward 

equal distribution. The experimental findings show that DDPG-PER can 

successfully manage resources by employing deep learning models to address 

complex optimization issues. As a result, the suggested DDPG-PER technique for 

task offloading and resource allocation in a MEC federation system is a perfect 

option for concurrently improving the IIoT network's latency and energy 

consumption. 
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CHAPTER 5 CONCLUSION 

In this research, we introduced an innovative MEC federation paradigm for IIoT 

networks, allowing IEs to offload demanding tasks not only to local but also to 

remote MEC servers, optimizing resource utilization effectively. Unlike previous 

studies, our framework encompasses practical considerations for optimal decision-

making, enhancing its real-world applicability. Yet, efficiently allocating resources 

to reduce system latency in dynamically changing conditions remains challenging. 

Using DDPG-PER, we defined this problem as an MDP with realistic limitations 

and suggested a task offloading and resource allocation framework for MEC 

federation in IIoT systems. Extensive testing demonstrated that the federation MEC 

method outperformed standalone IE or dedicated MEC server solutions. Moreover, 

our investigations highlighted DDPG-PER's superiority in reducing both power 

consumption and system delay compared to other resource allocation strategies. In 

future iterations, device mobility could be a consideration when optimizing IIoT 

system resources based on these findings.  
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