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Abstract—In recent years, computation offloading has become
an effective solution for limited resource issues. This article inves-
tigates decision offloading and computing resource allocation. We
propose a task offloading framework to minimize the total delay
considering the resource condition in the MEC federation system.
Then, we also solve this problem by transferring to Markov
Decision Process (MDP) and using the Deep Deterministic Policy
Gradient (DDPG) framework. Simulation results show that the
DDPG can successfully lower the delay of the tasks.

Index Terms—MEC federation, task offloading, resource al-
location, Markov decision process, deep reinforcement learning
(DRL).

I. INTRODUCTION

Mobile Edge Computing (MEC) is a solution for the issue of
limited computational, battery, and storage capability of user
devices. A rising tendency is to offload or shift computation-
intensive operations to potent distant computing platforms.
So many studies focus on the optimization problem in MEC
as minimizing the latency and energy cost [1] [2] [4] or
maximizing the offload tasks [3], but their problems are usu-
ally solved in MEC single while the technology is gradually
moving towards the MEC federation, the migration between
MEC servers probably can help improve efficiently of MEC
system.

In this study, we develop a resource allocation model by
proposing an efficient task offloading framework. First, we
propose the MEC federation system model that can migrate
tasks between MEC servers. Second, we focus on delay and
formulate an optimization problem with the constraints of
resources. Third, we transfer this problem to MDP and solve it
by using DDPG framework. Finally, we conduct experiments
to demonstrate the better performance of the DDPG framework
by comparing it with uniform resource management (URM)
and random resource management (RRM) algorithms.

II. SYSTEM MODEL

The MEC federation system model is shown in Fig. 1. There
are multiple user devices (UDs) N denoted by {1, 2, ..., N},
assuming that the devices are IoT equipment in the industry.
The MEC federation includes multiple MEC servers, each

Fig. 1. Proposed system architecture

MEC server can communicate with user devices by the base
stations (BSs) [1] [4]. All information of the resources and
tasks status will be informed to the controller to make the
decision that the tasks will be executed by the local device or
offloaded to the server [4]. If the MEC server can not handle
the offloaded tasks and has the remaining tasks, the remaining
need to be migrated and executed by another MEC server or
take the time for waiting in this MEC server.

A. Task model

We adopt a time-slotted model denoted {1, 2, ..., T}. At time
slot t, each UD generates a task, where the task data size is
denoted by Dn(t) with n ∈ {1, 2, ..., N}. We also suppose
that a UD can only request one task per time slot and tasks
can not be partitioned into sub-tasks to be executed in multiple
places at the same time.

B. Communication model

We consider 4 kinds of transfer links, up/down-link between
the user device and edge server and between two edge servers
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[5]. The data transfer rate of all links is obtained by the
Shannon formula as follows:

Rn(t) = B log2
(
1 +

PT
n (t)Gn(t)

BN0

)
, (1)

where B denotes the channel bandwidth, PT
n (t) denotes the

transmission power of the user device or the MEC server to
send out the task or the result, Gn(t) denotes the wireless
channel gain between two MEC servers or the user device
and the MEC server, and N0 = −174 dBm is Gaussian noise
power spectrum density.

When data is transferred, a delay will be incurred called
transmission delay:

T d
n(t) =

Dn(t)

Rn(t)
. (2)

Each UD should have enough energy to support the offload-
ing operation of the tasks. We call it the transmission energy,
calculated as follows:

ET
n (t) = T d

n(t)Pn(t). (3)

C. Computation model

The system has three computing modes:

• Execution by the local user device (Xij = 0)
Assume 1bit of task Dn(t) needs LU CPU cycles of the
user device, so the computing resource allocate for task
Dn(t) is fU

n (t) [2].
The delay is the computing time of the user device:

TU
n (t) =

LUDn(t)

fU
n (t)

. (4)

• Offloading to only one edge server (Xij = 1)
When the tasks are offloaded to the edge server, they
need to be stored in the buffer and wait for previous tasks
completed [6]. The queue delay is as follows:

TE−queue
n (t) =

LE

fE
n (t)

(SE
capacity − SE

available), (5)

with S is the storage space of the buffer.
The delay includes transmission delay TU−T

n (t),
TE−T
n (t), computing delay TE

n (t), and queue delay
TE−queue
n (t)) as follows:

TE
n (t) = TU−T

n (t) + TE
n (t) + TE−T

n (t) + TE−queue
n (t).

(6)

• Migration of remaining tasks to another server (Xij = 2)
The delays include computing delay TE

n′ (t), queue delay,
and communication delay (both between the user device
and edge server and between two edge servers TM−T

nr (t),
as follows:

TM
n (t) = TU−T

n (t) + TE−queue
n (t) + TM−T

nr (t) (7)

+ TE
n′ (t) + TE′−queue

nr (t) + TE′

nr (t) + TE−T
n (t).

D. Problem formulation

The objective of this study is to minimize the delay of
the MEC federation in consideration of the resources. The
objective can be expressed below:

min
Xij

T = min
Xij

T∑
t=1

N∑
n=1

1

2NT
[TU

n (t)(1−Xij)(2−Xij)

+ TE
n (t)Xij(2−Xij)(3−Xij)

+ TM
n (t)Xij(1−Xij)(3−Xij)]. (8)

We also present five constraints as below:

C1 : Xij ∈ {0, 1, 2}, (9)

C2 : 0 ≤
∑
j

Xij ≤ 2 ,
∏
j

Xij ̸= 1, (10)

C3 : pimin(t) ≤ pin(t) ≤ pimax(t), (11)

C4 : F j
available(t) ≥

N∑
n=1

f j
n(t) , f j

n(t) ≥ 0, (12)

C5 : Ej
available(t) ≥

N∑
n=1

Ej
n(t). (13)

Constraint 1 guarantees that the offloading decision only
can select one in 3 options. Constraint 2 means a server can
choose to migrate to only one place in time t. Constraint 3
presents that the transmission power should not be out of
range. Constraint 4 means the computing resource allocated
is a positive value and the total computing resource allocated
for all tasks should not be over the resource available at this
time. Constraint 5 shows the total energy consumption of the
device should not be over the energy available at time t [3].

III. METHODOLOGY

In this section, we transform our problem (8) into an MDP
problem and then use the DDPG framework for solving it.

A. MDP-based resource allocation problem

An MDP consists of a 5-tuple M = {S,A, P,R, γ}, with
γ ∈ [0, 1].

• State space:

S(t) = {G(t), D(t), E(t), F (t)}. (14)

• Action space:

A(t) = {p(t), f(t), X(t)}. (15)

• State transition probability: The state transition proba-
bility P (s(t+ 1)|(s(t), a(t)) indicates the probability of
s(t+ 1) given s(t) and selected a(t).

• Reward function: The reward function R(t) presents the
immediate reward when selecting A(t) in S(t). The
MDP solves the optimization problem by maximizing the
reward, but our problem is to minimize the delay. So, we
can maximize the negative of the objective function.

R(t) =
−1

N

N∑
n=1

Tn(t). (16)
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Fig. 2. DDPG framework

B. DRL-based resource allocation framework

In this article, we adopt the DDPG framework, which is
one of the categories of the Actor-Critic-based DRL, the
processing includes 3 phases:

• Update critic network then get Q-value: minimizing loss
function between Q-value target and Q-value predicted.

• Update actor network then optimize the policy µ(θµ):
maximizing the performance objective function by using
Determined strategy policy gradient.

• Update target network.

IV. EXPERIMENTS AND RESULTS

We conduct a series of simulations to evaluate the perfor-
mance of the DDPG scheme for resource allocation.

A. Experimental Setup

We give tasks size, the number of users, and the number of
MEC servers as input, the simulation output will be efficient
in offloading decisions and delay optimization with resource
allocation. Besides, all of the details of the setting parameter
are shown in Table 1.

TABLE I
EXPERIMENTS PARAMETERS

Parameters Value
Number of UDs 5

Number of edge servers 2
CPU cycles per bit of edge server 735

CPU cycles per bit of device 600
Tasks size [1, 10] GB

Bandwidth between device-MEC (up/down) 100M
Bandwidth between 2 MECs 150M

Power range [5, 38] dBm
Computing resource capacity of device/edge 5/25 GHz

Battery capacity of device 1000J

B. Results

Fig. 3 shows the average delay of tasks after training with
the DDPG, URM, and RRM schemes. When using DDPG,
the delay curve converges is 0.5s at 430 episodes. When using

Fig. 3. Impact of different methods to delay

URM and RRM, the convergence rates are slow, and the delay
is higher than DDPG.

V. CONCLUSION

In the MEC federation system, we formulate a framework
for offloading tasks and resource allocation to optimize the
delay and use the DDPG framework to get the results. For the
future direction, we want to apply more tight constraints that
are close to reality and try to optimize both delay and energy
with a trade-off between them.
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