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ABSTRACT Augmented reality (AR) in the internet of things requires ultra-low latency, high-resolution
video, and fairness in multi-user environments, which pose challenges for traditional cloud and edge
computing. To address this shortcoming, we studiedAR subtask offloading and resource allocation in amulti-
hop, multi-access edge computing federation. Our approach improves the quality of experience (QoE) by
optimizing video quality and reducing delay while ensuring fairness, which is modeled as the ratio between
provided and required quality. Instead of sequential execution, we adopt parallel AR subtask dependency
processing to minimize latency. We propose an improved deep deterministic policy gradient algorithm for
efficient solution exploration. Additionally, we implement strict training process monitoring to optimize
resource usage and ensure sustainability. Experiments demonstrate that our method improves QoE by nearly
8% compared with TD3 while cutting training time in half.

INDEX TERMS Multi-access edge computing, MEC federation, augmented reality, resource allocation,
quality of experience, deep reinforcement learning.

I. INTRODUCTION
Augmented reality (AR) is the real-time integration of
digital information within a client environment. Unlike
virtual reality, which constructs entirely synthetic virtual
environments, AR provides multi-sensory encounters by
blending real-world elements with computer-generated con-
tent, encompassing visual, auditory, haptic, somatosensory,
and olfactory sensations. Consequently, AR has been used
in various disciplines, including the internet of things (IoT),
entertainment, business, education, and telemedicine [1].
With the extensive development of AR services and the
advent of 5G and next-generation networks, AR in video
streaming offers a highly realistic and immersive view-
ing experience for clients. The tasks associated with AR
applications require considerable computing resources and
continuous real-time computing. These requirements are
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difficult to satisfy when using only the resources of AR
devices, such as glasses, head-mounted displays, or mobile
phones.

Typically, a cloud computing system helps clients process
tasks with significant computational loads [2]. Considering
client distance and congestion from excessive access, it is
infeasible for the cloud to accommodate delay-sensitive
AR tasks. To solve this problem, studies on multi-access
edge computing (MEC)-based IoT systems [3], [4], [5]
have moved computing tasks closer to clients. However, the
single-MEC model raises the potential issue of workload
imbalances. Some MEC resources face an overload of tasks
from clients, whereas others are underutilized. The MEC
federation system, which is illustrated in Fig. 1, is a key
technological advance that can solve this problem [6].
Many studies [7], [8], [9], [10], [11], [12], [13] have over-

simplified AR tasks by treating them as typical computing
tasks (without a subtask model), whereas other studies [14],
[15], [16], [17] have attempted to address this shortcoming
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FIGURE 1. MEC collaboration-based AR system.

by dividing AR tasks into five subtask dependencies (video
capture, tracking, mapping, object recognition, and render-
ing). However, this five-subtask model does not account
for a key factor in AR information, namely the retrieval
of AR objects. Furthermore, existing studies outline the
sequential execution of subtasks [14], whereas this approach
does not take advantage of the potential for optimization by
parallelizing tasks based on their dependencies. For example,
some subtasks can be executed concurrently to minimize
latency or improve resource efficiency, which has been
overlooked in previous studies. We attempt to address these
issues by constructing an updated AR subtask dependency
model with seven subtasks and a parallel working graph.

The optimization objective plays a vital role in optimizing
the quality of experience (QoE). Previous studies have often
focused on several main goals: reducing delays, reducing
energy consumption, and improving video quality [7], [9],
[11], [12], [13], [16], [17], [18]. However, existing methods
optimize the total QoE (average of clients), which can
unfairly prioritize certain clients to increase the total QoE.
To address this imbalance, [8] raised the issue of fairness
and proposed a solution that maximizes the minimum
quality among clients. However, their approach is inefficient
because each client’s quality requirements are different
(largely depending on the models of client devices and client
requests). We propose a novel fairness model based on a
function of the ratio between the quality of the received video
stream and quality either requested or supported by devices.

Despite the proven effectiveness of machine learning (ML)
methods for solving optimization problems, traditional algo-
rithms, such as game-theoretic and search-based methods,
still struggle with decision-making and scheduling problems,
often leading to poor performance. Deep reinforcement
learning (DRL), an advanced ML method, combines deep
learning [19] andRL.DRL can provide high-quality solutions
but consumes excessive time, computational resources, and
a large amount of data. We applied the deep deterministic
policy gradient (DDPG) algorithm to solve the target
problem. To reduce training time, we enhanced the DDPG
by considering multi-noise action (MNA) [20] and using
a prioritized-experience replay (PER) buffer based on the

weight of importance sampling (IS) [21]. MNA makes the
action space more discoverable, whereas PER with IS helps
accelerate and stabilize the training process.

Unlike computer vision ML tasks that typically output an
accuracy value (up to 100%), the target of the reward function
in DRL is a form of dynamic upper-bound optimization.
Therefore, even when tracking the return of the reward in
each training epoch, we cannot predict the distance to the
maximum convergence value. As a result, setting a reward
goal and expecting training to stop at this point is ineffective.
To evaluate and compare algorithms while minimizing
computational resource requirements, we designed a stopping
condition for our experiments. Specifically, the experiments
stopped when the algorithms reached convergence. We also
logged real-time milestones to evaluate resource usage.

Aiming to address the issues outlined above, the main
contributions of this study are as follows:
• We propose a practical AR application model that
includes seven dependency subtasks, incorporates an
AR object retrieval module and clearly defines the
characteristics of each subtask to enable effective
offloading decisions. We optimize subtask execution
by exploring parallelization opportunities based on task
dependencies rather than adhering to a strictly sequential
workflow.

• We formulate a QoE optimization problem with a
novel fairness metric for clients, aiming to maximize
video quality and fairness while minimizing delay. This
problem is transformed into a Markov decision process
(MDP) for optimization.

• We propose an improved DDPG (IDDPG) algorithm to
address the QoE optimization problem in large action
spaces. An MEC system utilizing IDDPG enables more
efficient decision-making for subtask offloading and
resource allocation.

• We conduct extensive experiments with training track-
ing to demonstrate the effectiveness of the proposed
framework. The results demonstrate that the proposed
method outperforms the state-of-the-art method TD3 on
AR video streaming, achieving nearly 8% better QoE
while requiring only approximately half the training
time.

The remainder of this paper is organized as follows.
Existing studies on optimizing AR-based MEC systems are
summarized in Section II. Section III discusses the pro-
posed subtask model, system model, and objective function.
In Section IV, we formulate an optimization framework under
various resource and time constraints. Section V presents
the IDDPG method used to solve the optimization problem.
Section VI describes the simulation settings and results.
A discussion of limitations is presented in Section VII.
Finally, conclusions are drawn in Section VIII.

II. RELATED WORK
In the context of AR-based MEC systems, traditional MEC
architectures with a single dedicated MEC server have been
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studied extensively. Compared with such systems, an MEC
federation enhances task performance and system efficiency.
However, federation-based systems introduce additional
complexity, requiring more advanced modeling and allo-
cation strategies. Furthermore, AR tasks present unique
characteristics and requirements that differ significantly
from general IoT tasks, necessitating specialized approaches.
Table 1 lists a summary of recent studies on AR task
offloading and resource allocation within AR-based MEC
systems. Table 2 delineates and compares our contributions
with the existing literature.

A. DEDICATED MEC SYSTEMS
Dedicated MEC systems have a traditional MEC architecture
with a single edge server that operates independently and
only accesses the central cloud without collaborating with
other edge servers. Most dedicated-MEC-based studies have
not considered the AR subtask model issue [7], [8], [9],
[10], [11] or have only considered an incomplete AR subtask
dependency model [16].

1) NO SUBTASK MODEL
Cheng et al. [10] researched edge caching and computation
in 5G for mobile AR and haptic internet, focusing on user
power consumption and edge caching optimization under
time constraints. They developed a technique for placing edge
caches in the 5G network using a heuristic greedy algorithm
and model selection approach to solve their optimization
problem. Their focus was primarily on energy optimization,
treating delay as a threshold without considering the specific
processes and characteristics of AR tasks.

Li et al. [9] presented a collaborativemodel data computing
service framework (CMCSF) for mobile web-based AR.
The CMCSF creates a cooperative service that serves the
MEC and cloud servers, along with a deployment plan to
reduce delay. They further studied a collaborative scheduling
strategy to improve the framework and adapt it to their
optimized problem. Similar to [10], they also failed to address
the complex model of AR subtasks.

Pan et al. [11] investigated the use of video-based
artificial intelligence inside an MEC system. A mixed-
integer nonlinear programming (MINLP) approach was
devised to reduce inference delays and energy consumption
while improving recognition accuracy. They presented a
channel-aware heuristic approach for offloading decision
optimization and used a distributed approach based on the
alternate-direction method of multipliers. However, they
limited the AR tasks to rendering only, leading to a less
realistic optimization problem.

Zhang et al. [8] examined the provision of AR services in
metaverse systems enabled by MEC. They aimed to solve
two challenges, namely optimizing the QoE of users and
resource allocation. They initially formulated a QoE model
that factored in localization errors and then introduced a
minimum-QoE maximization scheme to ensure user equity.

TABLE 1. Related works.
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TABLE 2. Our contributions.

However, this approach unbalanced the resources between
users and caused unfairness when some users required more
resources than others as a result of device heterogeneity.

Reference [7] studied a binary offloading approach for
AR edge computing. This work focused on reducing latency
while considering the computing power of mobile AR
devices. The proposed offloading model, which was based on
the DDPG-PER framework, allocated resources for beyond-
fifth-generation networks. The inputs of this model were
wireless channel gains and offloading states. However, this
work only considered AR tasks as typical computing tasks
while ignoring subtask dependencies.

2) SUBTASK DEPENDENCY MODEL
Unlike the studies mentioned above, [16] divided AR tasks
into subtasks, including capturing, tracking, mapping, ren-
dering, and objective recognition. An MEC-AR framework
was established to leverage the capabilities of 5G cellular
networks and enhance offloading decisions within a multi-
tiered system. Regardless, the AR task model ignored the
characteristics of each subtask. In reality, tasks, such as
tracking, should be prioritized for processing on a local
device or local server to ensure continuity and responsive-
ness. Offloading decisions were made based only on network
and machine status. To reduce complexity, [16] relaxed the
binary variables {0, 1} of decisions to real values [0, 1].
However, this relaxation can lead to the loss of feasibility.
Additionally, rounding a relaxed solution back to binary
values can introduce rounding errors, further reducing the
accuracy of the final solution.

B. MEC FEDERATION SYSTEM
In contrast to a dedicated MEC system, an MEC federation
establishes a framework for orchestrating the movement
of AR tasks across MEC servers within the system.

Additionally, Xu et al. [12] did not consider the AR task
model, whereas [14], [15], [17], [18] proposed AR subtask
models and considered the dependencies among subtasks.

1) NO SUBTASK MODEL
Reference [12] aimed to optimize the service delivery engines
for AR applications while enhancing the responsiveness
of such applications within resource constraints. They
constructed an online learning framework to maximize
dynamic rewards without foreknowledge of the future influx
of AR requests. In their network system, MEC servers were
connected through the backhaul network. However, they
assumed that the bandwidth in all connections was the same,
meaning no bandwidth limitations existed. No guarantee
exists that their online framework will work in real systems
with significant backhaul congestion problems.

2) SUBTASK DEPENDENCY MODEL
Braud et al. [17] proposed a system model to enhance
MEC’s current task offloading model by offering multi-
server, device-to-device (D2D), edge, and cloud offloading.
Their model connected MEC servers through a backbone
network and D2D through a multi-path configuration.
They formulated an optimization function for total latency.
A scheduling algorithm was applied to allocate six subtask
dependencies for a multi-server and multi-device model
under a multi-path routing network. However, they assumed
a fixed additional latency for the connection between servers,
which put the connection latency outside the scope of their
optimization.

Peng et al. [15] investigated an AR application for
healthcare cyber-physical systems (CPSs). They examined
offloading AR application tasks in healthcare CPSs to edge
computing while maintaining user privacy andmobility. They
proposed a unique multi-objective meta-heuristic strategy
based on the R2 indicator-II, which protected privacy while
minimizing delay, load balancing, and energy consumption.
However, they only considered a set of edge nodes without
interconnection between them. The different AR subtasks
could be offloaded to different edge nodes, but they assumed
that the server handled most tasks, whereas user devices only
handled video recording and display. Therefore, this model
underestimated the capabilities of user devices.

In [18], the authors first described edge device per-
formance issues and explained why dividing the AR
overlay-rendering pipeline is necessary. They maximized
user QoE while minimizing service costs, such as latency,
bandwidth, and energy consumption. They developed a
unique decision strategy based on DRL to address this
challenge. However, the MEC servers were connected
directly in pairs, and they treated all connections as equal,
which is unrealistic. Additionally, they focused on only two
subtasks (rendering and encoding), which they identified as
heavyweight tasks.

Chen et al. [14] investigated an energy-efficient strategy
for task offloading and resource allocation tailored to AR in
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FIGURE 2. System model.

single- and multi-MEC systems. Initially, a model of the AR
application was constructed, which manifested as a directed
acyclic graph that reflected the inherent capabilities of the
application. Similar to other works, this study lacked AR
object-finding and processing components in the AR subtask
model. The authors also assigned only the rendering subtask
to the user equipment. The task offloading strategy was only
applied to adjacent MECs, which narrowed the options for
offloading. The authors proposed a strategy based on DRL
in a dynamic communication context called the multi-agent
DDPG framework.

In summary, based on the above analyses, AR-based MEC
systems still face the following problems:

• Existing studies have not addressed the issue of subtask
dependencies in AR services. Their subtasks are still
scheduled within a narrow range (sequential).

• No existing studies have provided a comprehensive QoE
optimization model that simultaneously considers video
quality, fairness, and delay.

• Previous studies have considered MEC federation sys-
tems but neglected to clarify the interconnection among
MEC federations.

• Previous studies used heuristic methods to solve opti-
mization problems. Several studies applied DRL to the
problem of resource allocation using many continuous
variables. However, the use of DRL is challenging
considering the very heavy training process required for
a complex system, such as an MEC federation.

III. SYSTEM MODEL
As shown in Fig. 2, the system is composed of multiple smart
AR devices in the set N = {1, 2, . . . ,N } in the bottom layer,

MEC servers in the set Se = {S1, S2, . . . , SE } located with the
base station (BS) in the middle layer, and a cloud server SC in
the top layer. AR clients may be smart glasses, head-mounted
displays, smartphones, etc., which have low processing power
and no AR content caching. EachMEC server contains ample
computing resources. However, because the storage resources
in each MEC server are limited, AR objects are distributed
among the MEC servers, meaning that only a limited number
of AR objects can be cached on oneMEC server. We consider
a scenario in which an AR client n ∈ N can run an AR
application m ∈ M by offloading certain tasks to the servers
or executing them locally, where M = {1, 2, . . . ,M} is a set
of AR applications.

Additionally, an AR application model can be defined
using subtask dependencies. Depending on the characteristics
of each AR subtask and the system conditions, AR clients
can offload a portion of their AR tasks to the MEC and cloud
servers. The clients connect to the BSs on the MEC servers
via wireless communication. The MEC servers can connect
to nearby MEC servers or cloud servers through wired links.
Routers are used for connections between servers. A multi-
hop routing network allows servers to connect even when
they are far apart. However, the infrastructure is considered to
be preconfigured, and the servers are connected only through
available links.

Therefore, we can define the set of all servers S as follows:

s ∈ S = Se ∪ {SC } = {S1, S2, . . . , SE , SC }.

Each router w ∈ R and a set of routers R are defined as

w ∈ R = {R1,R2, . . . ,RW }.

Additionally, to determine the routing path from the client
to the server, the following two factors are determined:
• The binary value xn,s ∈ {0, 1} denotes the connection
status between client n and local MEC server s as

xn,s =

{
0, do not use connection client n - server s
1, use connection client n - server s.

• The binary values yn,w,w′,k , yn,w′,w,k ∈ {0, 1} denote
a direct connection from router w to w′. The opposite
direction w to w′ is used to transfer the k th subtask of
client n. For {w,w′} ⊂ R, the values are defined as
follows:

yn,w,w′,k =

{
0, do not use connection router w→ w′

1, use connection router w→ w′,

and

yn,w′,w,k =

{
0, do not use connection router w′→ w
1, use connection router w′→ w.

A. AR APPLICATION MODEL
In this section, we propose an AR application for seven
subtasks corresponding to the recommended deadlines and
computational resource requirements for each task. Unlike
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FIGURE 3. AR application model.

TABLE 3. AR-subtask data sizes.

the AR application model in [14] and [22], we add an AR
object taking component considering the feasibility of dis-
tributing and storing AR objects in MEC servers. Individual
MEC servers do not store all AR objects, as assumed in
previous studies [7], [14], [16]. Fig. 3 presents this new AR
application subtask model in detail.

Each AR application is divided into the following seven
subtasks:

1) Video capture starts the process with a picture captured
by a video source (data collected by the client’s
camera);

2) Tracking monitors the location of the clients within
their surroundings;

3) Mapping builds a digital model and dynamic map of
the surroundings;

4) Object recognition detects an identified item in the
surrounding environment;

5) AR object taking stores and supplies AR objects;
6) Rendering combines other subtasks to prepare the

processed frames with the virtual layer on top;
7) Video display displays the processed video (bymonitor,

mobile phone, or head-mounted display).
It is noteworthy that the Video capture and Video display
components must be executed locally on client devices,
whereas the AR object taking components can only be
handled by the servers.

FIGURE 4. Subtask parallel dependency graph.

AR task processing requires significant computational
resources, which can be attributed to the size of the tasks
and process frequency. For example, an AR application
allows the subsequent frame to be captured before the current
frame has completed processing. Additionally, in each time
slot t , one client n runs only one AR application m. k ∈
{1, 2, 3, 4, 5, 6, 7} represents the kth subtask of the AR
application. To describe the parameters of each subtask k of
each client n, we define a tuple as follows:

2k
n = {I

k
n ,Okn,L

k
n ,Vn},

where I kn , O
k
n, and L

k
n denote the input AR subtask data size,

result output size, and workload required to process a unit
of data (CPU cycles/bit), respectively. Vn defines the highest
resolution that the client device can support. αkn ∈ [0, 1]
denotes the ratio of output to input of the subtask data size.
Therefore, the data size of the output is determined as

Okn = I kn αkn .

The seven subtask modules are Capture, Tracking, Map-
ping, Object rec., AR object taking, Rendering, and Display.
2k
n identifies the subtask with k ∈ {1, 2, . . . 7}. The types of

input and output data for each subtask are also listed. Based
on the dependency relationships between the subtasks, the
data size calculation formulas are listed in Table 4. Therefore,
given the size of the input data for the first subtask, the sizes
of all subsequent subtasks may be determined, as listed in
Table 3. Considering the dependencies between subtasks, the
definitions of the subtasks are listed in Table 4.

Based on the characteristic properties of each subtask, the
location that executes each subtask is listed in Table 5.

We extract a dependency subtask graph, as shown in Fig. 4.
The dependency graph can be divided for parallel processing,
even if each task depends on others. For example, tasks
22
+23

+24 and 25 can be processed simultaneously. This
model can improve the total latency by processing subtasks
in parallel. A subtask does not have to wait for the previous
subtask when it is not an input requirement.

Based on the definitions above, the AR-based MEC-
federation workflow process follows the steps described
below:
• First, AR devices capture videos at time step t , and the
output of Video capture is the corresponding frames.

• Second, Tracking and AR object taking requests are
generated. Tracking can be executed by AR devices or
the local MEC server, whereas AR object taking can be
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TABLE 4. AR-subtask definitions.

TABLE 5. AR-subtask execution locations.

handled by any MEC server that contains the objects or
a cloud server.

• In the next steps, Mapping and Object recognition
are executed. The requirement of Mapping results for
Tracking is not a real-time process. The Rendering
request is generated only when Object recognition, AR
object taking, and Video capture are completed.

• After finishing Rendering, the frames attached to AR
objects are displayed on the client’s device.

B. DELAY MODEL
The delay model incorporates the following different types of
delays: communication, computation, and queuing. We target
an AR-based MEC federation network utilizing two distinct
modes of communication for transmitting data (including
tasks and results). The AR clients connect with a local MEC
server via wireless connections, such as LTE/5G, whereas
the MEC servers connect to neighbors and the cloud server
through a wired network, such as optical fiber. We establish
uplinks and downlinks for each type of connection. The
uplink sends the AR task data, and the downlink sends the
AR result data.

1) WIRELESS COMMUNICATION DELAY
Each client can only connect to the nearest MEC server,
which is referred to as the local server, and the client must be
within the local server’s coverage area. The wireless channel
gain between client n and server s is [23]

Gn,s = 127+ 30 log(distn,s),

where distn,s is the distance between client n and local MEC
server s, and R is the radius of the area covered by the local

MEC server, which is defined as follows:

distn,s = min
s′∈Se

distn,s′ ≤ R. (1)

The uplink and downlink transmission rates can then be
calculated using the method described in [23] as follows:

rupn,s = Bupn,s log2

(
1+

PnGn,s
N0B

up
n,s

)
, (2)

rdownn,s = Bdownn,s log2

(
1+

PsGn,s
N0Bdownn,s

)
, (3)

where Bupn,s and Bdownn,s correspond to the uplink and downlink
channel bandwidths allocated to these links, respectively;
Pn and Ps indicate the transmission power allocated by
client n and local MEC server s, respectively; and N0 =

−174 dBm/Hz is the power spectral density [24].
The wireless communication delay in the uplink and

downlink, which are used for transferring subtask k of client
n and the results, can be calculated as

dupn,k =
∑
s∈Se

I kn
rupn,s

xn,s, (4)

ddownn,k =
∑
s∈Se

Okn
rdownn,s

xn,s. (5)

The delay associated with the wireless connection of the
uplink and downlink can be calculated as

dn,k = dupn,k + d
down
n,k . (6)

2) WIRED COMMUNICATION DELAY
The system connects its servers through wired networks.
A backhaul network consists of a group of R connected
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routers, as described previously. Therefore, a multi-hop
connection transfers subtasks between servers in a network.
Many other studies have assumed that the bandwidths of
each wired link are equal throughout the entire system.
However, this assumption is impractical. We present an
in-depth investigation of the latency introduced during data
transmission in multi-hop networks.

In contrast to the store-and-forward switching (SFS)
method, cut-through switching (CTS) has the benefit of
reducing latency because it does not require data to be stored
at each hop before being forwarded [25]. The delay in a route
consists of a data transmission delay across each hop and a
backhaul delay proportional to the number of hops traversed.
For example, let tn,k and Nhop represent the data transmission
time of a single hop and the number of hops in the routing
path, respectively. When SFS is utilized, the communication
delay along the routing path is tn,kNhop. However, when
employing CTS, this value is tn,k + σNhop, where σ is a
positive coefficient [26].
Let Pupn,k and Pdownn,k represent the routing uplink and

downlink paths for transferring the k th subtask and result of
client n, respectively. These routing paths are supported by
RupP and RdownP pairs of directly connected routers (w,w′) and
(w′,w), which implies that yn,w,w′,k = yn,w′,w,k = 1. Because
multiple routing paths share a direct uplink connection from
routerw tow′, the throughput of the uplink channel (w,w′) for
transferring the k th subtask and result of client n is calculated
as follows:

φn,w,w′,k =
Bw,w′∑

n∈N
∑

k∈K yn,w,w′,k
, (7)

where
∑

n∈N
∑

k∈K yn,w,w′,k andBw,w′ are the total number of
subtask transmission channels for all users using connection
(w,w′) and total bandwidth of connection (w,w′), respec-
tively. Similarly, the throughput of the downlink channel
(w′,w) is calculated as follows:

φn,w′,w,k =
Bw′,w∑

n∈N
∑

k∈K yn,w′,w,k
. (8)

The data transmission rate of the connection is determined
by the end-to-end throughput, which is the lowest throughput
among all links in the connection. Therefore, the throughput
of the entire routing uplink and downlink path is determined
as follows:

φPupn,k
= min{φn,w,w′,k∀(w,w′) ∈ Pupn,k}, (9)

φPdownn,k
= min{φn,w′,w,k∀(w

′,w) ∈ Pdownn,k }. (10)

The data transmission latencies for routing paths Pupn,k and
Pdownn,k are calculated as follows:

tdata,upn,k =
I kn

φPupn,k
, (11)

tdata,downn,k =
Okn

φPdownn,k

, (12)

where I kn and Okn denote the data input and output sizes,
respectively.

The hop distance is directly proportional to the number
of router pairs that the data traverses when utilizing CTS.
Therefore, the wired communication delays of the uplink and
downlink transmissions are calculated as follows:

tupn,k = tdata,upn,k + σ (RupP + 1), (13)

tdownn,k = tdata,downn,k + σ (RdownP + 1), (14)

where σ denotes the positive coefficient of each hop delay.
As a result, the wired communication delay associated

with the wired connection of the uplink and downlink can be
calculated as

tn,k = tupn,k + t
down
n,k . (15)

3) COMPUTATION DELAY
When a subtask is executed, a delay occurs during the
computing process. In our proposed AR subtask model, all
subtasks require computing resources, except for AR object
taking. Therefore, we do not consider its computing delay.
Instead, we consider the server containing the required AR
object. Let an,s define whether server s contains the required
object for client n as

an,s =

{
0, server s does not contain object
1, server s contains object.

When s = SC , the variable an,SC = 1 indicates that the
cloud server contains all required objects.
The binary value zn,k,s ∈ {0, 1} defines only one location

to execute subtask k of client n as follows:

zn,k,s =

{
0, local device of client n computes subtask
1, server s computes subtask.

The variables must satisfy
∑

s∈S (zn,5,san,s) = 1, which
indicates that the server is used for subtask 25

n because it
contains the required object.
As mentioned previously, when k = 5, then Lkn = 0.

For the other subtasks, the number of CPU cycles required
to process a single data unit is denoted as Lkn ̸= 0. Let cn,k
represent the delay when executing subtask k ∈ K for client
n as

cn,k =
∑
s∈S

zn,k,s
I kn L

k
n

f kn,s
+ (1−

∑
s∈S

zn,k,s)
I kn L

k
n

f kn
, (16)

where f kn,s and f kn correspond to the allocated computing
resources of server s or a local client device to execute subtask
k of client n. Lkn denotes the computing resources required for
executing this subtask.

4) QUEUING DELAY
The server uses a buffer to store incoming unhandled tasks.
This buffer is separate from the memory that stores the AR
objects. The buffer operates on a first-in-first-out basis, and
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the buffer capacity of each server is limited. If the buffer of a
given server is full, it cannot receive any new subtasks.

Similar to the servers, each client device has a buffer that
stores subtasks in a queue. The clients will not run out of
memory because new tasks are only generated when they can
store them. Based on the above definition, the queuing delay
of subtask k from client n is calculated based on all previous
subtask processing [27] as follows:

qn,k =
∑
s∈S

∑
n′∈{N |n′ ̸=n}

∑
k ′∈{K |k ′ ̸=k}

zn,k,scn′,k ′

+ (1− zn,k,s)
∑

k ′∈{K |k ′ ̸=k}

cn,k ′ ,

where cn′,k ′ denotes the computation delay of each previous
subtask k ′ for client n in the buffer.

5) TOTAL DELAY
Based on the above formulations, the total end-to-end delay
of each subtask k from client n is calculated as follows:

Tn,k = dn,k + tn,k + cn,k + qn,k . (17)

However, the requirement of 23
n results in 22

n not being in
real-time. Therefore, we can ignore the delay in the backhaul
process. As mentioned in Section III-A, subtasks 22

n+23
n+

24
n and 25

n can be processed in parallel, starting with the
output of subtask21

n and ending with the input to subtask26
n.

Therefore, the total delay in processing the AR application for
each client is

Tn =
∑

k={1,6,7}

Tn,k +max{
∑

k=2,3,4

Tn,k ,Tn,5}. (18)

Maintaining an acceptable delay is critical to improving the
QoE of AR applications. Therefore, the time limit of the AR
application running on client n is set as Tmaxn .

C. VIDEO QUALITY
In addition to delay, video quality is also an important factor
affecting QoE.We presume that the reversed-difference mean
opinion score (RDMOS) represents a downloaded video’s
quality [28]. The RDMOS ranges from 0 to 100, where better
quality corresponds to higher values. The video resolution is
represented by the data rate of the video played on client n,
which is denoted as rn. The mathematical representation
of video quality may be expressed as a concave function
of rn [28] as follows:

Qn = a log(rn)+ b, (19)

where a and b are 25 and −33, respectively [28].

D. FAIRNESS
Maximizing AR video stream quality in the shortest time
is crucial for improving overall QoE in AR-based MEC
systems. However, a simplistic approach can lead to unfair
scheduling, benefiting overall QoE at the expense of certain

clients. Fairness remains a critical factor in video streaming
services [29].
Modern platforms, such as HTTP live streaming and

dynamic adaptive streaming over HTTP, optimize streaming
through adaptive bit rate mechanisms, selecting video
resolutions based on user requests and network conditions.
In addition to preventing resource waste (e.g., transmitting
bit rates higher than device capabilities), our solution
prioritizes fairness among users under resource constraints
while striving for optimal video quality.
We further investigate QoE fairness to ensure reliable and

fair video quality decisions for all clients. In our formulation,
we maximize the fairness Fn by minimizing F∗n , which is
defined as the overall deviation of the ratio between the bit
rate of video stream rn and the highest video resolution that
can support Vn for each client n as follows:

Fn = −F∗n = −

∣∣∣∣ rnVn − 1
N − 1

∑
n∈{N |n′ ̸=n}

rn′

Vn′

∣∣∣∣. (20)

IV. PROBLEM STATEMENT
We aim to maximize the average QoE of all clients by
maximizing the video quality and fairness among clients
while reducing delays. To obtain better video quality, a client
must send a higher number of frames and pixels per frame,
resulting in a large load and increasing the total end-to-end
delay. Therefore, we should formulate a function to optimize
the tradeoff between delay, video quality, and fairness.

To investigate the weighting parameters between the
conflicting goals of our optimization problem, we must
represent each weight as a multiple of two elements: the
normalization value (α1, β1, γ1) and weight of importance
(wQ, wT , wF ) for each objective. QoEn can be represented as
follows:

QoEn = α1.wQ.Qn − β1.wT .Tn + γ1.wF .Fn. (21)

To avoid the effects of different units and magnitudes,
we use three normalization factors to normalize the magni-
tude of each variable, which can be expressed as a division
by the range distribution of each element as follows:

α1 =
1

Qmax − Qmin
,

β1 =
1

Tmax − Tmin
,

γ1 =
1

Fmax − Fmin
. (22)

• Qn: Video bit rate recommendation to ensure acceptable
quality based on resolution and frame rate. In sum-
mary, the bit rate of an AR video should be higher
than 500 Kbps (480p-SD), corresponding to the mini-
mum RDMOS of 30 [28].

• Tn: The delay threshold of an AR application is
more sensitive than that of a normal application.
Therefore, [14] set the maximum delay to 25 ms.
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TABLE 6. Weight & normalization values.

• Fn: As one of the first formulations of fairness, we set
the range to [−1.5, 0] to ensure fairness between users.

• [Qmin,Qmax], [Tmin,Tmax], [Fmin,Fmax]: The range
distributions defining the lower and upper bounds for
video quality, delay, and fairness, respectively.

We utilize weights to evaluate the importance of variables.
The weights can be changed from zero to infinity depending
on the target of optimization. In our setting, the values of
the weights were set to {70, 500, 75}. The high delay weight
wT value stands out, demonstrating our optimization intent
to focus on delay. Additionally, the smaller the value of wQ,
the better the video quality. A smaller wF indicates better
fairness. The values of the weights are listed in Table 6.

To balance video quality, end-to-end delays, and fairness,
the objective function is expressed as follows:

max
x,y,z

QoE = max
x,y,z

1
N

∑
n∈N

QoEn. (23)

We also adopt the following constraints:

C1 :
∑
s∈S

xn,s ≤ 1, (24)

C2 :
∑
s∈S

zn,k,s ≤ 1, (25)

C3 :
∑

r∈{S|r ̸=s}

yn,s,r,k ≤ 1,

∑
s∈{S|s̸=r}

yn,r,s,k ≤ 1, (26)

C4 :
∑
s∈S

(zn,5,san,s) = 1, (27)

C5 :
∑
n∈N

Bupn,s ≤ B
up,max
s ,∑

n∈N

Bdownn,s ≤ B
down,max
s . (28)

C6 : Tn ≤ Tmaxn , (29)

C7 :
∑
n∈N

∑
k∈K

f kn,s ≤ Fs,∑
k∈K

f kn ≤ Fn, (30)

C8 :
∑
n∈N

∑
k∈K

zn,k,sI kn ≤ SEs. (31)

• C1 guarantees that each client n connects to at most one
local MEC server s.

• C2 indicates that each task k of client n can be processed
in only one location.

• C3 indicates that only one route can be chosen to transfer
a subtask or result.

• C4 means that the selected server for handling the AR
object taking subtask must contain the required AR
object.

• Bup,maxs and Bdown,maxs denote the maximum bandwidth
of the uplink and downlink of each server s, respectively.
The maximum bandwidth should not be exceeded by the
uplink and downlink bandwidth allocated by each server,
as indicated by C5.

• C6 states that the cumulative duration of each task
cannot exceed the specified finish time.

• C7 specifies that the total computing resources allocated
to all subtasks must not exceed the computing resource
capacitiesFs andFn of server s and client n, respectively.

• C8 implies that the space used to store the subtasks in
each server cannot exceed the server capacity SEs.

System notations are listed in Table 7.
Similar to [23], the optimization problem described in

Equation (23) includes the characteristics of a MINLP
problem. The inherent computational complexity of MINLP
problems arises from a combination of nonlinearity and
integer variables when attempting to find an optimal solution
under a sensitive delay. Therefore, we propose an IDDPG
algorithm to address this optimization problem. The IDDPG
algorithm uses PER-IS and MNA to enhance the original
DDPG and makes decisions regarding subtask offloading and
resource allocation to obtain optimal results.

V. METHODOLOGY
In this section, we describe the proposed task offloading
and resource allocation framework for the AR-based MEC
system. An MDP is established to model the optimization
problem. Then, the DDPG approach is used to derive a
solution to the MDP. However, the original DDPG method
suffers from high complexity and a large action space.
Therefore, we enhance it by consideringMNA [20] and using
a PER buffer based on the IS weight [21]. MNA makes the
action space more discoverable, whereas PER with IS helps
expedite and stabilize the training process.

A. MDP MODEL
1) STATE SPACE
At the beginning of time slot t , the prevailing state of
the system environment is acquired by the agent. This
information at timeslot t includes five sets as

st = {K (t), I (t),F(t),A(t), SE(t)},

where K (t) represents the location of all subtasks in
the system and I (t) indicates their size. F(t) denotes the
computing resource state of all clients and servers in the
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TABLE 7. Notation list.

system. A(t) denotes the property of the servers, which is the
AR object caching status, and SE(t) denotes the MEC server
storage resource status (for subtask queuing).

2) ACTION SPACE
Having evaluated the present state st , subsequent decisions
a(t) are then made by the agent, encompassing five distinct
sets outlined as

at = {f (t),B(t), x(t), y(t), z(t)},

where f (t) denotes the allocated computing resources of
all clients and servers, B(t) denotes the bandwidth assigned
for all connections, and x(t), y(t), and z(t) correspond to
decisions regarding the wireless connections between clients
and servers, directly wired connections between routers, and
locations where AR subtasks are executed, respectively. The
x(t) and y(t) actions correspond to routing path decisions.
DDPG requires actions to be continuous, but the sets x(t),

y(t), and z(t) are discrete. Therefore, we use the softmax
function to rescale these values. The offloading and resource
allocation decisions x(t), y(t), and z(t) are represented by
probabilities in the range [0, 1], and their sum is one. The
highest probability corresponds to a binary value of one in
the above definition.

3) REWARD
The reward rt serves as the environment’s response to an
agent executing an action at . In our specific scenario, the goal

is to maximize the average QoE of all clients, and the reward
is defined as the average QoE at each time step t . Therefore,
the reward rt is determined at each time step t as follows:

rt =
1
N

∑
n∈N

(αQn(t)− βTn(t)+ γFn(t)). (32)

B. DDPG OVERVIEW
The DDPG model consists of four deep neural networks
(DNNs), namely the actor network θµ, target actor network
θµ′ , critic network θQ, and target critic network θQ

′

[30]. The
actor network aims to refine the policy µ(θµ), whereas the
critic evaluates the quality of an action based on its associated
Q value. The DDPG network employs two target networks
as delayed versions, which help maintain and improve the
original networks.

The value functionQµ(st , at ) is determined by each policy
µ for the action–state pairings. This function quantifies the
expected return from executing action at in the context of
state st [23]. The approximations of the outputs from the actor
and critic networks are as follows:

µ(st |θµ) ≈ µ∗(st ),

Q(st , at |θQ) ≈ Q(st , at ).

Additionally, the output of θµ is augmented with
Ornstein–Uhlenbeck (OU) random noise ϱt to enhance the
exploration of actions [30] as follows:

at = µ(st |θµ)+ ϱt . (33)
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FIGURE 5. DDPG framework.

The training dataset is derived from the replay memory
buffer R, which has a limited capacity of V . The tuple
{st , at , rt , st+1} is saved in R for each time step t . The
networks θµ and θQ update their weights by using randomly
chosen mini-batches {si, ai, ri, si+1} from R. The critic
network uses the temporal difference (TD) error δi as its loss
function, which can be derived as follows:

L(θQ) =
1
M

δ2i =
1
M

(
Q(si, ai|θQ)− yi

)2

, (34)

where yi andM denote the target Q value and data amount in
each mini-batch, respectively. The loss function is minimized
using the Adam optimizer [31] based on the following
gradient equation:

h

θµ

Jµ∗ =
1
M

M∑
i=1

h

ai

[Qµ(si, ai|θQ)
h

θµµ(si|θµ)

]. (35)

The DDPG algorithm employs the current actor and critic
network parameters, denoted as θµ and θQ, respectively, and
performs soft updates as follows:{

θµ′
← (1− δ)θµ′

+ δθµ

θQ
′

← (1− δ)θQ
′

+ δθQ.
(36)

The DDPG framework is illustrated in Fig. 5.

C. IMPROVED DDPG
In DRL frameworks, replay buffers are generally essential
for maintaining model efficacy. Sampling from the buffer
helps reduce data variability, prevents the loss of acquired
knowledge, and enhances data diversity. Each sample within
the replay buffer has a distinct impact on the system training
process. As mentioned previously, DDPG employs a random
selection process for mini-batches without considering their
significance in the model. As a result, it consumes extensive
training time because replaying meaningless samples does
not result in large rewards. Therefore, we use the PER

Algorithm 1 IDDPG Algorithm (Using PER-IS and MNA)
1: Input: State space (environment state)
2: Output: QoE optimization, task-offloading and resource-allocation

strategy, routing decision
3: Initialize critic Q(s, a|θQ), weight θQ, and actor µ(θµ), weight θµ

4: Initialize target criticQ′, weight θQ
′
← θQ and target actor µ′, weight

θµ′
← θµ

5: Initialize replay buffer R, size V , and mini-batch M
6: Set priority D1 = 1, exponents u, v
7: Initialize the number of episodes H ’;
8: for episode = 1,H do
9: Initialize K random process ϱκ , κ ∈ {1, 2, ..K }

10: Initialize the system environment and obtain the initial observation
state s1

11: for t = 1,T do
12: Generate K actions (40)
13: for each action ât,κ do
14: Observe reward rt and new state st+1
15: Store experience (st , ât,κ , rt , st+1) in R; set maximal

priority Dt = maxi<tDi
16: if t > V then
17: for j = 1,M do
18: Sample experience j with probability (37)
19: Compute IS weight (38)
20: Set target Q value
21: Update the priority of experience j according to the

absolute TD error |δj|
22: end for
23: Update critic network while minimizing loss func-

tion (34)
24: Update actor network using policy gradient (35)
25: Update target networks (36)
26: end if
27: end for
28: end for
29: end for

buffer [21], which utilizes prior knowledge to avoid strong
correlations between incoming data.

Within the context of stochastic prioritization, the proba-
bility associated with sampling experience j is formulated as
follows:

P(j) =
Duj∑
i D

u
i
, (37)
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FIGURE 6. IDDPG (using PER-IS and MNA) framework.

where rank(j) represents the position of experience j within
R, whereas Dj = 1

rank(j) > 0 represents the priority of
experience j. We use the absolute TD error as a priority
indicator to represent the importance of each experience.

Given that the TD error value δ inherently captures the
extent of the learning potential within the samples, PER
prioritizes the replay of experiences with the greatest TD
error and executes a single action per iteration. However,
incorporating PER into DDPG has two drawbacks:
• Experience samples with low TD error values in the
first replays are often replayed infrequently or replayed
only once, whereas cases with a high TD error are
replayed repeatedly. This process leads tomany valuable
samples being missed, reduces diversity, and increases
susceptibility to over-fitting.

• DDPG generates only one action per iteration. Our
problem has a large action space with high complexity
(multi-hop introduces a significant amount of routing
options, especially when increasing the number of MEC
servers), which extends the training process.

To address the first issue, we use the IS weight. This
approach guarantees that the experiences with the lowest
TD error are given a replay probability that is directly
proportional to their priority. To address the second problem,
our algorithm uses an MNA process. In contrast to the
original DDPG, when operating the MNA process, multiple
OU noises are added to the proto-action (output of the actor
network) to create noisy actions and enhance exploration.
Then, in each iteration, a set of actions is performed to
increase exploration. The details of the PER-IS and MNA
processes are presented below.

First, the IS weight is incorporated to mitigate the
magnitude of the gradients and enhance training stability.
The IS weight, as outlined in [32], is computed using the

following formula:

wj =
1

V v.P(j)v
, (38)

where V represents the buffer size and v lies within the range
[0, 1]. Furthermore, the weights are normalized by 1

maxiwi
to

scale the updates downward effectively. Consequently, the
differential loss function is defined as follows:

wj
h

θ
Q
1

L(θQ1 ) = wj.δj.
h

θ
Q
1

.Q(s, a|θQ1 ). (39)

By incorporating IS weights to expedite the training
process, PER achieves amore comprehensive and dependable
resolution of the issues encountered in DDPG.

Second, the DRL agent initializes K by adding OU noise
processes to generate K noisy actions. The noisy action κ is
ât,κ , which results from the combination of proto-action at
and the κ th OU noise as

ât,κ = at + ϱt,κ . (40)

Therefore, with each proto-action at , the process can
generate χ actions based on χ noises. The procedure for the
IDDPG algorithm is defined in Algorithm 1 and illustrated in
Fig. 6.

VI. EXPERIMENTS
This section presents the performance of the proposed frame-
work for AR subtask offloading and resource allocation. The
two goals of our experiments were collecting evidence of
the effectiveness of an MEC federation compared with a
dedicated MEC and collecting evidence of the effectiveness
of the IDDPG method compared with other methods (when
applied to our MEC federation model). Simulations were
conducted on a personal computer running Windows 11
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TABLE 8. Environment parameters.

TABLE 9. Model training parameters.

(64-bit) with a 2.60 GHz Intel(R) Core(TM) i5-11400F CPU
and 16 GB of RAM. The DRL implementation used Tkinter
8.6, Tensorflow 2.6, and Python 3.7. Anaconda was used as
the development environment.

A. EXPERIMENTAL SETTINGS
The simulation scenario is as follows. One cloud server,
10 MEC servers, and 30 clients around the MEC servers are
distributed in a 6 × 6 km area. An MEC server can connect
to other servers or the cloud through multi-hop connections.
20 routers exist with at least one route between each pair of
servers. Two routers within 2 km can connect directly to each
other using a fiber cable. Each MEC server covers a 500-m
radius and the clients inside that radius. If a client is allocated
to an overlapping region with more than one MEC server, the
client connects to the nearest MEC server. Table 8 lists all the
parameters of our system.

The primary objective of the IDDPG model is to identify
the optimal decisions for AR subtask offloading and resource
allocation to obtain the maximum QoE. Our model consists
of four five-layer networks. The IDDPG approach iteratively
updates the model during system operation, allowing it to
adapt to evolving environments dynamically. The batch and

mini-batch sizes are set to 64. The training process begins
by using the stored memory samples, and at each stage, the
DNNs are trained to collect a significant amount of new data
samples. DRL, which is a form of self-learning, generates an
experience dataset through exploration. We define a dataset
as a mini-batch regularly sampled from the replay buffer.
Detailed information regarding model parameters can be
found in Table 9.

B. PERFORMANCE EVALUATION
This study considers AR subtask offloading and resource
allocation in an AR-based MEC federation. The proposed
approach aims to optimize the overall QoE for all clients,
which is essential for systems with limited resources. Con-
sequently, we conducted experiments to assess the proposed
model’s performance in various settings.

The following approaches are compared:

• DedicatedMEC–IDDPG (DM-IDDPG): Applying the
IDDPG algorithm to a dedicated MEC server system,
where each MEC server operates independently [7],
[8], [9], [11], [16]. When MEC servers cannot execute
subtasks, they can be sent to the central cloud.

• MEC Federation–Greedy (MF-Greedy): The MEC
servers collaborate or access the cloud server via
multi-hop connections only when the current device is
overloaded [10], [14]. Subtasks are executed succes-
sively on local clients and local servers until constraints
are exceeded.

• MECFederation–TD3 (MF-TD3): Applying the state-
of-the-art DRL framework TD3 to our multi-hop MEC
federation system.

• Proposed MEC Federation–IDDPG (MF-IDDPG):
Applying the IDDPG algorithm to a multi-hop MEC
federation system. Coordination between MEC servers
is established to obtain optimal system performance.

To demonstrate the superiority of our AR subtask model
compared with the conventional subtask model (sequential
processing subtasks), we also performed the following
experiments:

• Sequential subtask model: The system model is the
same as our proposed MEC federation model, and
the optimized method is IDDPG. However, the AR
subtask model consists of seven subtasks that operate
sequentially from Capture to Display without any
parallel processing [14].

• Our subtask model: The system model is the same
as our proposed MEC federation model, and the
optimization method is IDDPG. Additionally, the AR
subtaskmodel consists of seven dependent subtasks with
some parallel processing between subtasks depending
on their characteristics.

1) PERFORMANCE COMPARISONS AND CONVERGENCE
First, we examine QoE metrics (calculated from the received
video quality and delay) while following four approaches
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FIGURE 7. Average QoE comparison.

throughout the training process. The average QoE progres-
sion is presented in Fig. 7.

First, we compare MF-Greedy and the proposed MF-
IDDPG, both of which contain similar system models
but utilize different optimization strategies. Notably, the
MF-Greedy technique is not learning-based. Using the same
MF system, MF-Greedy provides a minimal QoE value of
−5. The IDDPG approach helps the MF system achieve
a QoE of 34. These results demonstrate that the proposed
framework significantly improves network efficiency, partic-
ularly in complex environments, such as theMF environment.

We also evaluated the effectiveness of IDDPG in different
systems. Fig. 7 reveals that the DM-IDDPG algorithm
achieves a QoE value of −24, whereas the MF-IDDPG
algorithm achieves a QoE value of 34. Improvements in the
MF system are evidence of remarkable resource utilization
and service quality optimization. Regardless, evidently, the
rate at which IDDPG converges when implemented in the
MF system is slightly lower than that in the DM system.
DM-IDDPG exhibits the fastest convergence, converging
after 74 episodes, whereas MF-IDDPG converges after
149 episodes. This result indicates that DM systems represent
a far less complex and limited range of possible actions
compared with MF systems. The MF system contains a
significantly larger range of possible actions owing to the
complex architecture of the multi-hop routing network.
Consequently, longer processing times are required during
the exploration phase.

ComparedwithMF-TD3, ourmethod has a higher variance
reward value. TD3 updates the policy network less frequently
than the value network (i.e., the critics), which stabilizes
learning and flattens the training reward curve. PER-IS
focuses more on high-error experiences, which can make the
learning curve spikier as the agent responds to the diverse
priorities of sampled experiences. However, our convergence
speed is faster than that of TD3 (episode 197, value 35.04)
because of the aggressiveness of the PER-IS method in
exploring priority values.

2) EFFECT OF INCREASING THE NUMBER OF CLIENTS
In this evaluation, we examine QoE results and training
times for the four strategies with different numbers of clients

FIGURE 8. Impact of number of clients on QoE.

FIGURE 9. Impact of the number of clients on training time.

(10, 20, 30, and 40). The number of MEC servers is set to
10, and the GPU capacity is set to 20 GHz, emphasizing
that higher QoE values correspond to better performance. The
results are presented in Fig. 8.

Overall, all strategies suffer reduced efficiency as the
number of clients in the system increases. However, unlike
the other strategies, MF-IDDPG maintained positive QoE
values even with 40 clients. The QoE values of the 10, 20,
30, and 40 client cases are 64.48, 56.45, 34.19, and 24.35,
respectively. Additionally, although the QoE degradation
between 10 and 40 clients when using DM-IDDPG is
equivalent to that of MF-IDDPG, the QoE values when using
DM-IDDPG are negative for all four cases, indicating the
ineffectiveness of the DM system.

TD3 employs a twin delayed network architecture, which
necessitates a sufficiently large dataset to train the networks
effectively during each iteration. Insufficient data can lead to
suboptimal performance. This limitation explains why TD3
underperformed compared with our method in the scenario
with only 10 clients.

In addition to QoE, an essential factor to consider
when evaluating strategies employing DRL is training time.
As shown in Fig. 9, the training time for the various strategies
increases as the number of clients increases. MF-IDDPG
requires training times ranging from 2 to 11 hours across
different scenarios. Conversely, DM-IDDPG offers shorter
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TABLE 10. Comparison of the average received video quality, delay, and fairness with different numbers of clients.

training times (0.8, 1.6, 2.6, and 4.8 hours). Regardless,
as stated previously, these strategies may not deliver optimal
efficiency in terms of the QoE. Conversely, the MF-Greedy
strategy, which does not rely on machine learning techniques,
has a training time of 0 hours (the training time values overlap
in the figure). Although this strategy may not require any
training time, it fails to provide the desired performance levels
necessary to address the optimization problem effectively.

The significant disadvantage of TD3 compared with our
method is the training time and complexity of training.
Running two neural networks in parallel and not selecting
samples causes TD3 to spend excessive time on datasets
with low contributions (from 6 to 27 hours). Additionally,
the policy network updates less frequently than the critic
network, causing delays in the updating of the optimization
function. The training time increases exponentially with the
increasing complexity of the system.

Table 10 lists the average values of the received video
quality, delay, and fairness when the QoE is optimized using
different approaches. As the number of clients increases, the
video quality of the four approaches decreases. However,
the values of the proposed MF-IDDPG approach are better
than those of DM-IDDPG and MF-Greedy. The average
delay of all methods is much lower than the time limit
requirements, ranging from 1.712 to 6.001 ms. The approach
that provides the highest average delay is DM-IDDPG, which
occurs because a dedicated MEC system lacks resource
allocation and cooperation between servers, causing the total
task processing time to increase, particularly when many
clients request a certain MEC. This factor also affects the
fairness values of DM-IDDPG, which range from −0.33 to
−0.2. In general, except for MF-Greedy, which produces the
lowest average delay value with 30 clients, the MF-DDPG

FIGURE 10. Impact of server computing resource capacity on QoE.

andMF-IDDPGmethods have the best values for each metric
when optimal QoE is achieved.

3) EFFECT OF INCREASING THE COMPUTING RESOURCES
OF EACH SERVER
Fig. 10 presents the average QoE as the computing resource
capacity of the servers increases. Compared with that of the
other strategies, the QoE value of our proposed MF-IDDPG
is the highest. The MF system with multi-hop connections
can access the cloud and remote MEC servers, providing
beneficial options. Additionally, each decision is handled
by an optimal algorithm (IDDPG) that dynamically adjusts
the strategy to ensure that client QoE is maximized while
satisfying all constraints. In the initial stage (GPU= 10GHz),
the QoE of the proposed and MF-DDPG algorithms is the
highest, followed by that of the MF-Greedy algorithm, and
finally, the DM-IDDPG strategy. As the GPU resources
increase, the QoE value of MF-Greedy increases and almost
reaches the level ofMF-IDDPG because a resource allocation
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and task offloading algorithm are more effective in low-
resource situations.

DM-IDDPG has the lowest QoE values when increasing
the GPU resources, indicating that the DM system does
not provide good performance, even when using a strong
optimization algorithm, such as IDDPG, owing to the lack
of load balancing for a large volume of tasks. The efficiency
of the MEC system increases when the GPU resources of
each DM server increase, as illustrated in Fig. 10 with a QoE
increase of 123, which is three times that of the proposed
method (increase of 41).

Table 11 lists the average values of the received video
quality, latency, and fairness as the optimal QoE increases
with different approaches. One can see that DM-IDDPG
provides the lowest video quality values, followed by MF-
Greedy. Using the same IDDPG optimization algorithm, the
MF system performs better than the DM system when the
computing resources of the servers increase. A comparison
of MF-Greedy and MF-IDDPG reveals that learning-based
methods outperform greedy methods.

In terms of the average delay, the lowest and most optimal
delay values are provided by our proposed method when
GPU = 10 GHz and GPU = 15 GHz. In the other two
cases, the values of the proposed method are not minimal but
are competitive, proving that the proposed method ensures
optimal received video quality. However, to improve user
QoE, latency must also be considered.

Similar trends can be observed for the average fairness
value. In two out of four cases, MF-IDDPG produces the
most optimal results. Changing the GPU does not cause large
fluctuations in the sample dataset, so the methods based on
DRL produce similar results.

4) AR SUBTASK MODEL COMPARISON
In this section, we compare our AR subtask model with
a normal AR subtask sequence. The primary experimental
parameters are listed in Table 8. The typical model executes
seven subtasks in sequence, whereas our model allows
Tracking, Mapping, and Object recognition to operate in
parallel with AR object taking.
As listed in Table 12, the main difference between the

results of the two subtask models is the average latency
value. Parallelizing the subtasks significantly reduces the
total execution time of a complete task. In theory, a longer
processing time results in better video resolution. In the
typical method, the video size does not change, but the
processing time is prolonged, leading to a decrease in video
quality (bit rate) compared with our model. Overall, based
on the influence of the tradeoff weights, the values are
magnified, leading to significant differences in QoE values
between the two AR models.

5) SUBTASK OFFLOADING LOCATION
In each episode, 30 clients generate AR tasks. Each AR task
is then divided into seven subtasks. After each episode, the
algorithm exports information regarding subtask distribution

FIGURE 11. Subtask distribution changes over time.

(i.e., where the subtasks are executed, which can be the local
client device, local MEC server, any remote MEC server,
or cloud server).

The total number of subtasks for each episode is 210.
We evaluate the distribution of the subtasks to be executed.
Fig. 11 reveals that in the initial episodes, very few subtasks
are offloaded (i.e., the subtasks are executed by local devices).
However, as the number of training episodes increases, the
number of offloaded operations increases and reaches the
limit of 60. This result can be explained as follows.

When the number of subtasks executed by local devices
is reduced, two types of subtasks, namely (Video capture
and Video display), must still be performed by local devices.
Only the first episodes send requests to the cloud server.
Subsequent episodes only send one or two requests. The
growth in the number of subtasks handled by the remoteMEC
server is evident after 110 episodes, proving that the proposed
MEC federation system operates efficiently.

VII. DISCUSSION AND FUTURE WORK
Despite the promising results of our research, our current
methodology has several limitations. A significant issue
is the increased processing time required for handling
dispersed AR content across multiple servers, which nega-
tively affects overall system performance. Additionally, the
training process for our model is lengthy and resource-
intensive, posing challenges for practical deployment in
real-world environments. Additionally, our work was limited
to simulations, and integrating our model into a practi-
cal system requires additional resources. Furthermore, our
methodology for weighting optimization variables remains at
a fundamental stage, limiting its precision and applicability.
Finally, certain assumptions made during the study, while
necessary to simplify the modeling process, may influence
the generalizability of our findings to diverse scenarios.

Based on the findings of this study, future work will
address these limitations and explore several new directions.
Wewill focus on optimizing the distribution process to reduce
latency and explore alternative ML models that may improve
system performance. Additionally, we aim to integrate
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TABLE 11. Comparison of the average received video quality, delay, and fairness in servers with different GPU capacities.

TABLE 12. AR subtask model comparison.

sustainable development considerations by evaluating the
tradeoffs between MEC system performance and energy
consumption during the execution of DRL algorithms.
Based on the outcomes of this study, we also plan to
address user mobility concerns, which play a critical role
in optimizing resource allocation within MEC federation
systems. By incorporating mobility dynamics, we aim to
enhance system performance and adaptability further in real-
world scenarios.

VIII. CONCLUSION
In this paper, we proposed an MEC federation model
for AR services. This framework is used to delegate
computational AR tasks to MEC servers, and tasks are
divided into seven subtasks. Rather than constraining subtask
processing to local MEC servers, our approach allows these
subtasks to be transferred to remote MEC servers through
a multi-hop wired network, resulting in more efficient
system resource utilization. Furthermore, we presented an

effective decision-making procedure for resource allocation
and task offloading, simplifying the implementation of real
systems. This task was modeled as an MDP with realistic
limitations. We proposed the MF-IDDPG algorithm for
optimization. Extensive experiments demonstrated that the
proposed MF-IDDPG framework outperforms competing
systems. Additionally, we strictly monitored the training
process to minimize the waste of computational resources.
The results highlight the potential of our approach to improve
resource allocation, reduce latency, and enhance overall
system performance, making it a promising solution for
real-world AR applications.
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