
Received 18 July 2023, accepted 2 August 2023, date of publication 7 August 2023, date of current version 10 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3302518

Deep Reinforcement Learning-Based Task
Offloading and Resource Allocation for
Industrial IoT in MEC Federation System
HUONG MAI DO1, TUAN PHONG TRAN1, AND MYUNGSIK YOO 2
1Department of Information Communication Convergence Technology, Soongsil University, Seoul 06978, South Korea
2School of Electronic Engineering, Soongsil University, Seoul 06978, South Korea

Corresponding author: Myungsik Yoo (myoo@ssu.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) funded
by the Korean Government [Ministry of Science and ICT (MSIT)], South Korea, through the Development of Candidate Element
Technology for Intelligent 6G Mobile Core Network under Grant 2022-0-01015; and in part by MSIT under the Information
Technology Research Center (ITRC) Support Program Supervised by IITP under Grant IITP-2023-2021-0-02046.

ABSTRACT The rapid growth of the Internet of Things (IoT) has resulted in the development of intelligent
industrial systems known as Industrial IoT (IIoT). These systems integrate smart devices, sensors, cameras,
and 5G technologies to enable automated data gathering and analysis boost production efficiency and
overcome scalability issues. However, IoT devices have limited computer power, memory, and battery
capacities. To address these challenges, mobile edge computing (MEC) has been introduced to IIoT systems
to reduce the computational burden on the devices. While the dedicated MEC paradigm limits optimal
resource utilization and load balancing, the MEC federation can potentially overcome these drawbacks.
However, previous studies have relied on idealized assumptions when developing optimal models, raising
concerns about their practical applicability. In this study, we investigated the joint decision offloading and
resource allocation problem for MEC federation in the IIoT. Specifically, an optimization model was con-
structed based on all real-world factors influencing system performance. To minimize the total energy delay
cost, the original problem was transformed into a Markov decision process. Considering task generation
dynamics and continuity, we addressed the Markov decision process using a deep reinforcement learning
method. We propose a deep deterministic policy gradient algorithm with prioritized experience replay
(DDPG-PER)-based resource allocation that can handle high-dimensional continuity of action and state
spaces. The simulation results indicate that the proposed approach effectively minimizes the energy-delay
costs associated with tasks.

INDEX TERMS MEC federation, IIoT, task offloading, resource allocation, Markov decision process, deep
reinforcement learning.

I. INTRODUCTION
The Internet of Things (IoT) has increased significantly in
recent years owing to the rapid growth in smart mobile
devices and 5G technologies. The IoT has been used in
various domains, such as medicine [1], transportation [2],
and the military [3]. In the industrial sector, IoT-enabled
industrial systems, also known as Industrial IoT (IIoT),

The associate editor coordinating the review of this manuscript and

approving it for publication was Chih-Min Yu .

help boost productivity, reduce system deployment costs,
and simplify maintenance. According to a recent study by
Microsoft, 91% of enterprises have at least one IIoT project
in their pipelines, and Million Insights predicts that the IIoT
industry will reach 992 billion in worldwide investments
by 2025 [4]. By automating smart devices to gather, pro-
cess, and transfer real-time data inside industrial systems,
the IIoT may lead to massive breakthroughs in the industry.
However, IIoT systems generate a considerable volume of
data, while the devices only limited computing, memory, and

83150
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5578-6931
https://orcid.org/0000-0002-1152-6919

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 1. The MEC-based IIoT system.

energy capacities. Furthermore, several applications are sen-
sitive to delays, while others require complex processes.
Therefore, it is crucial to develop technologies that can
improve the performance of IIoT systems.

Numerous studies have used cloud computing to over-
come IIoT system issues [5], [6]. Cloud computing provides
on-demand computer resources, including services, storage,
and processing capabilities. However, cloud servers are often
deployed in remote locations by using IoT devices. This
increases system delay, which is particularly undesirable
for latency-sensitive applications. Mobile edge computing
(MEC) has emerged as a viable solution to this problem.
Owing to the proximity of the MEC server deployment,
computationally demanding tasks are executed with minimal
latency. Fig. 1 shows an IIoT system supported by an MEC
server. The integration of sensors and processors in industrial
equipment facilitates data acquisition and analysis. The IIoT
devices have the capability to manage processing tasks inde-
pendently or alternatively, the tasks can be offloaded to the
MEC server. In particular, several studies [7], [8] suggested
offloading tasks toMEC servers that are directly connected to
the device, the so-called dedicated MEC servers, to minimize
system latency. If the dedicated MEC server lacks the neces-
sary capabilities, tasks are redirected to a remote cloud server.
This not only introduces higher processing latency but also
disregards the utilization of resources available in the nearby
MEC servers.

TheMEC federation was proposed to address this issue [9],
[10], [11], [12]. Instead of exclusively connecting to a distant
cloud server, MEC servers inside the MEC federation sys-
tem have direct connections. This has significant advantages
for utilizing system resources and allocating workloads to
suitable locations within the system according to the amount
of resources required. Recent research [11], [12] focused
on reducing the latency of IIoT systems using the MEC
federation. Through the optimization of resource allocation
and task offloading, the system can minimize service latency.

Nevertheless, the formulation of the optimization prob-
lem is constrained by certain limitations. Existing stud-
ies [13] assumed that IIoT devices lack the ability to execute
tasks independently. In addition, several studies [11], [12]
neglected to consider the computing capabilities of IIoT
devices in their optimal models. In practice, IIoT devices
can perform several computational tasks [14], [15]. More-
over, relying solely on the MEC server to perform the tasks,
instead of delegating it to the devices themselves, may not
be the optimal approach, particularly in systems involving a
substantial number of devices. This procedure may impose
excessive strain on the bandwidth and processing resources
of the MEC servers. However, the optimization models in
various studies [10], [16], [17] neglected the influence of
queues and storage resources. Several studies [11], [12]
utilized M/M/1 queues to model the task processing. Tech-
nically, this entails assuming that the cache of the MEC
server possesses infinite capacity for task queuing and that
each MEC server is capable of handling a maximum of one
task-processing service. The assumption of unlimited storage
capacity of MEC servers poses a challenge in the practical
implementation of optimal decision-making, particularly in
systems with substantial workload volumes, such as IIoT.

In addition to the latency, the energy consumption of the
system is a crucial consideration. This considerably influ-
ences the life cycle of IIoT devices, owing to limitations
in their battery capacity. To address this problem, several
studies [10], [18], [19] have presented strategies for concur-
rently optimizing the latency of whole task processing and
power consumption of IIoT devices. Nevertheless, certain
constraints exist inmodeling the energy consumption ofMEC
systems. This study [10] omitted the power consumption of
servers and focused solely on enhancing the energy efficiency
of IIoT devices during task execution and data transmission.
References [18] and [19] conducted research on the energy
optimization of servers with a specific focus on computa-
tional energy consumption. However, their study neglected
the fact that servers consume energy even when they are not
actively processing tasks because they must remain in an
operational state and be available to transmit and receive data.
Insufficient optimization of server power consumption can
lead to economic losses due to the charges incurred for power
consumption by MEC servers. Consequently, it is crucial
to minimize the energy consumption of both IE and MEC
servers during task execution.

However, the resource allocation problem in an MEC
federation system as a nonlinear integer program has been
proven to be an NP problem [11]. Hence, it is not fea-
sible to obtain a globally optimal solution in polynomial
time. Several solutions have been proposed to address this
problem, including traditional optimization-based [8], [20],
[21], [22] and machine-learning (ML)-based methods [18],
[19], [23], [24]. The authors of [20] presented a parti-
cle swarm optimization to address the resource allocation
issue for an IIoT system supported by MEC. The low
complexity of heuristic techniques results in a tradeoff in

VOLUME 11, 2023 83151

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

model performance, particularly for systems with high-
dimensional inputs. Hence, ML-based techniques are consid-
ered effective solutions to this issue. In recent years, deep
reinforcement learning (DRL)models have been increasingly
used to optimize MEC system resources. A deep Q-learning
strategy was proposed to decrease the latency and energy
consumption in MEC-assisted IIoT systems with blockchain
integration [19]. The authors of [23] used a deep determin-
istic policy gradient (DDPG) to construct a framework for
the dynamic resource management of an MEC system in
an IIoT network. Although Deep Q-Learning is restricted
to discrete optimization problems, DDPG can be used to
determine optimum decisions in continuous domains, partic-
ularly for resource allocation issues. Using the replay buffer,
DDPG may retrieve prior data samples, thereby reducing
the input correlation. The procedure for sampling data in
this buffer has a direct impact on model performance and
convergence. Nevertheless, DDPG selects data samples from
a buffer with equal weights, disregarding the fact that cer-
tain experiences provide higher returns. Thus, the prioritized
experience replay (PER) [25] was utilized to enhance the
performance of the model by evaluating its significance and
selecting appropriate experiences for the DDPG training pro-
cess. In addition, the importance sampling (IS) approach [26]
was used to assist the PER in managing the problem of
overfitting.

To address the above mentioned issues, in this study,
we investigated the performance and resource optimization
problems of the MEC federation system utilized in an IIoT
network. In particular, we simultaneously consider latency
and energy consumption throughout the entire IIoT system.
The available resources of both industrial equipment (IE)
andMEC servers, such as computation, communication, stor-
age, and power resources, are also used as inputs for the
optimization problems. To address this issue, we propose a
DDPG-based model for effective resource allocation and task
offloading that is enhanced using a PER buffer. The main
contributions of this study are as follows:
• We propose an efficient task offloading and resource
allocation framework for IIoT systems that are inte-
grated with MEC federation. By modeling the system
in detail with end to end delay and energy consumption
of both IIoT devices and MEC servers, we formulate an
optimization problem with trade-off between delay and
energy consumption. In contrast to prior research, our
objective function takes comprehensively into account
factors that influence the performance of the system in
practical settings. We also use the queuing model as
M/M/c/K model to formulate queuing delay.

• To deal with the mixed-integer nonlinear programming
(MINLP) characteristics of our optimization problem,
the proposed formulation is transformed into a Markov
decision process (MDP). We propose the DDPG-PER
algorithm-based resource allocation for solving this
optimization problem. The algorithm is run as a DRL
unit in the MEC Federation controller, collecting and

processing all information and having an overview of
the whole system.

• We conduct intensive experiments to highlight the
performance of the proposed MEC federation system
and DDPG-PER-based resource allocation method. The
results demonstrate that our proposal outperforms other
resource allocation strategies and system schemes for
the IIoT system.

The remainder of this paper is organized as fol-
lows. Section II presents work related to optimization
of MEC systems that has been studied in recent years.
Section III describes the proposed system model and
defines the optimization problem for resource allocation.
In Section IV, a DDPG-PER-based resource allocation
algorithm is described to solve this problem. Section V
presents simulation results. Finally, conclusions are presented
in Section VI.

II. RELATED WORK
TheMEC optimization of IIoT systems has gained increasing
attention in recent years. Most research [17], [20], [23] has
focused on optimizing the performance of a dedicated MEC
system in which IE tasks are offloaded to a local MEC server
or cloud server. Additionally, several studies [10], [11], [12]
have been conducted on the integration and performance
optimization of MEC federation systems on IIoT networks.
Table 1 summarizes the recent studies related to optimization
by task offloading and resource allocation in MEC-enabled
IIoT systems. Then, based on Table 1, we summarize and
highlight our contributions to the existing works, as shown
in Table 2.

A. DEDICATED MEC SYSTEM
The authors of [8] proposed a consolidated stochastic compu-
tational offloading (CSCO) framework for MEC-based IIoT
systems to reduce service disruptions, particularly for time-
critical tasks. In this system, IIoT tasks can be offloaded to
the connected MEC server, which is modeled as a Poisson
process for an M/M/c/c system. In addition, a method for
predicting the possibility of overloading an MEC server was
developed. Based on the predicted results, the authors built
a QoS-aware offloading framework to minimize the system
latency.

The resource allocation problem for an IIoT network
in a forest-monitoring system was addressed in [20]. This
system comprises IIoT devices deployed across a forest
to gather and transmit data to unmanned aerial vehicles
(UAVs) that function as MEC servers. Reference [20] pro-
posed a learning-based cooperative particle swarm opti-
mization algorithm combined with a Markov random
field-based decomposition approach to reduce the response
time of UAVs.

Reference [23] were interested in dedicated MEC systems.
The foundation of the system primarily consists of a BS
and an MEC server. Each IIoT piece of equipment creates
a computing task that must be executed using an MEC server.

83152 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

TA
B

LE
1.

Re
la

te
d

w
or

ks
.

VOLUME 11, 2023 83153

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

TABLE 2. Our contributions.

When attempting to manage limited resources, the key prob-
lem is reducing delays. The primary contribution of [23] was
an examination of dynamic resource management for inte-
grated power control and computational resources. To solve
this problem, a DRL-based dynamic resource management
(DDRM) algorithm was proposed.

In [16], the authors considered MEC-enabled IIoT net-
works comprising of an MEC server and multiple user
devices. They suggested three strategies for minimizing the
system delay: local computing, partial computation offload-
ing, and complete computation offloading. To obtain the
optimal decision, the optimization problem was modeled as
MDP and then solved by the DDPG algorithm.

The authors of [21] investigated maximizing the long-term
utility of IIoT systems. In particular, they created an opti-
mization mathematical model that enhanced experience qual-
ity while minimizing energy expenses. The optimization
problem was decomposed into subproblems with varying
time frames and addressed using a low-complexity heuris-
tic technique based on the alternating direction multiplier
method.

Reference [18] considered the optimization in MEC sys-
tem for IoT networks. The gateway collects data from the
IoT users that are processed by the edge server. The proposed
computation task offloading scheme includes two steps:1)
centralized user clustering using the K-means clustering
algorithm, and 2) distributed computation offloading using
a Deep Q-Network. Their goal was to reduce long-term sys-
tem costs by limiting computing, storage, and transmission
power resources. Reference [18] performed a relatively good
optimization based on the DQL algorithm; however, as men-
tioned above, one of the two optimal objects is the energy
consumption, which has not been fully formulated.

The authors of [19] proposed a framework that enables
the integration of the blockchain into MEC-enabled IIoT sys-
tems. This 3-layer system consisted of a user layer for the IIoT
devices, a controller layer consisting of several MEC servers,
and a blockchain layer that provides security and reliability to
the system. Simultaneous optimization of the computational
overhead and power consumption of the system was modeled
as an MDP. The authors propose an algorithm based on Deep
Q-learning to solve this problem. Similar to [18] and [19] did
not consider the power consumption of servers during data
transmission.

In [17], an optimal method for task offloading and resource
allocation in an MEC-enabled IIoT system was proposed.
Specifically, an IIoT system consists of many devices con-
nected to an MEC server via a 5G wireless network, whereas
theMEC server is connected to a cloud server via a fiber-optic
network. In contrast to other studies, [17] built an optimiza-
tion problem that considered system delay and economic
loss. Subsequently, an optimal algorithm based on the general
Benders decomposition (GBD) technology and a heuristic
algorithm were proposed to efficiently solve the problem.

B. MEC FEDERATION SYSTEM
In contrast to a dedicated MEC system, an MEC federation
must determine the migration of tasks between the MEC
servers within the system. However, [13] failed to consider
the transfer of tasks between MEC servers, and [10], [11]
used a greedy scheme that only migrates tasks when theMEC
server resources are exhausted. However, this may result in
inefficient utilization of idle resources. Using the optimal
scheme, [12] made task migration decisions based on an
optimization process that used the system state as the input.

Reference [11] proposed an MEC-enabled IIoT network
architecture integrated with a Software-Defined Network
(SDN). In this architecture, the SDN controller was respon-
sible for choosing the MEC server to execute tasks. A greedy
approach was proposed to decrease the response time of tasks
and balance the load amongst MEC servers.

In [12], a multiarmed bandit-based learning strategy was
introduced to minimize the task execution latency in an
MEC-enabled IIoT system. In particular, the tasks generated
by the user device may be handled by the service device or
MEC server, depending on the task co-offloading framework.
This strategy was straightforward to implement because it
does not require the complete state of the entire system.

In [10], the authors developed a resource allocation frame-
work for an MEC-enabled IIoT network that enables IIoT
tasks to be handled locally or offloaded to MEC servers. The
system prioritizes the local MEC server for task execution.
The tasks were forwarded only to a remote MEC server when
the local server is overwhelmed. The authors concurrently
investigated the latency and power consumption of the system
while formulating the problem and proposed an improved dif-
ferential evolution algorithm (IDE) and a heuristic algorithm
for optimal decision making. However, they neglected to cal-
culate the power consumption of theMEC servers. Moreover,

83154 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

their resource allocation and task offloading strategies were
not optimal when only forwarding tasks were used and the
local MEC server was overloaded.

Reference [13] aimed to develop a task offloading frame-
work that considers privacy. MEC servers manage tasks to
address the computational challenges of IoT devices. They
developed models with the optimal energy costs, response
times, and success rates. The authors subsequently proposed
a local differential privacy-based deep reinforcement learning
(LDP-DRL) strategy for optimal decision-making. In this
model, the processing capacity and energy consumption of
the IIoT devices as well as the data transmission and reception
capabilities of the MEC servers were neglected. In addition,
the proposed model is only concerned with determining the
best MEC server as opposed to coordinating between servers
to make an optimal decision.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM OVERVIEW
Fig. 2 illustrates an MEC-enabled IIoT network composed of
multiple IEs,MEC servers, and anMEC federation controller.
In this system, IEs are located in geographically fixed indus-
trial zones. Hence, this study does not consider the mobility
of IEs. As shown in Fig. 2, multiple IEs can be simultaneously
connected to the same MEC server via a wireless connection.
These MEC servers are deployed close to IEs. In contrast to
the dedicated MEC paradigm, the MEC servers in an MEC
federation are directly linked through a backhaul network.
This connectivity allows users to interact with and share
resources and exchange information. The MEC servers are
connected to a centralized MEC federation controller, which
collects all system data and determines the optimum resource
allocation.

To guarantee services such as data collection, processing,
and feedback provision in an IIoT system, IEs must execute
a large number of computation-intensive tasks. Owing to
constraints in computing power and battery capacity, they
may not meet the computational demands. The integration
of MEC with the IIoT network enables the offloading of IE
workloads to MEC servers. The connected MEC server, also
known as a local MEC server, provides better computational
and storage capacities for executing tasks that are offloaded
by multiple IEs. However, the local MEC server is not the
optimal choice if the resource demand exceeds this limit.
When a task is too computationally intensive or when exces-
sive IEs are inquiring simultaneously, the local MEC server
may shift the task to a remote MEC server with additional
resources. The MEC federation controller determines where
the computations are performed, depending on the available
system resources.

The flowchart of the entire process is illustrated in Fig. 3:

• Information processing: 1⃝, The task is generated by
IE; 2⃝, the information of resources and task size are
transferred to the local MEC server; 3⃝, the information
of resources and task size of IE and MEC servers are

sent to Controller; 4⃝, the Controller makes the decision
based on this information; 5⃝ and 6⃝, the decision is sent
back to the MEC servers and IE.

• Task processing: After obtaining the decision in 7⃝,
the task will be executed by IE; or 8⃝ the task will
be executed by the local MEC server; or 9⃝, the task
will be migrated to the remote MEC server; in the case
of choosing the remote MEC server 10⃝ , the result of
migrated task will be sent back to the local MEC server;
11⃝ , finally, the result from the local MEC server will be
sent back to the IE.

B. SYSTEM MODEL
In this study, we denote the number of IE and MEC servers
as D and S, respectively. We consider a time interval divided
into T time slots. In each time slot t , IE d generates Id (t) tasks
by following a uniform distribution [7]. As in [11], we denote
the ith task generated by the IE d in time slot t as a tuple

wdi (t) = {a
d
i (t), b

d
i (t), c

d
i (t)}

where adi (t), b
d
i (t), and c

d
i (t) denote the data size, result size,

and number of CPU cycles required to process a unit of data,
respectively. cdi (t) depends on the type of application, and can
be acquired through offline measurements [7].

As mentioned previously, IEs generate multiple large
real-time tasks that can be handled locally on the IE or
remotely on the MEC server through computational offload-
ing. The offloading strategy for each task is indicated by
variable xdi (t). Technically, x

d
i (t) = 0 represents the task to

be executed locally at the IE, whereas xdi = s(0 < s ≤ S)
indicates that the task is handled by MEC server s.

C. DELAY MODEL
1) COMPUTATION DELAY
Whether a task is executed locally or offloaded to an MEC
server, computation always results in a delay. If the IE has
sufficient resources, the data transmission cost is reduced.
T di (t) represents the latency in executing the ith task of the
IE d , which is calculated as:

T di (t) =
adi (t)c

d
i (t)

f di (t)
, (1)

where f di (t) denotes the computing resources allocated by IE
d to execute task wdi (t) in time slot t . Similarly, the delay
caused by the computing task wdi (t) on MEC server s is
determined as follows:

T si (t) =
adi (t)c

d
i (t)

f si (t)
, (2)

where f si (t) denotes the computing resources allocated by
MEC server s to execute task wdi (t) in time slot t .

2) TRANSMISSION DELAY
In an IIoT system, IEs must perform several computationally
complex tasks. Because of resource constraints, they may

VOLUME 11, 2023 83155

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 2. System architecture.

FIGURE 3. Flow of information and task processing.

send these tasks to MEC servers and receive the compu-
tation results. This increases system latency. In this study,
we consider an MEC-enabled IIoT network that includes two
types of communication for data transmission. IEs commu-
nicate with MEC servers via wireless connections, whereas
MEC servers connect to each other through a wired network.
For each type of connection, we defined both uplink and
downlink. The uplink is used to send the task data, with the
downlink is used to send back the resulting data.

The IEs are connected to the MEC servers via a wireless
connection. Let Gd,s denote the wireless channel gain [27]
between the IE d and MEC server s, which is calculated as:

Gd,s = 127+ 30 log(distd,s),

where distd,s denotes the distance between the IE d and
MEC server s. Thus, the wireless uplink data rate RUd,s(t)
and downlink data rate RDd,s(t) of the communication channel

between the IE d andMEC servers s in time slot t are obtained
by Shannon, which can be formulated as follows [23]:

RUd,s(t) = BUd,s(t) log2
(
1+

Pd (t)Gd,s

N0BUd,s(t)

)
, (3)

RDd,s(t) = BDd,s(t) log2
(
1+

Ps(t)Gd,s

N0BDd,s(t)

)
, (4)

where BUd,s(t) and BDd,s(t) denote the uplink and downlink
channel bandwidths allocated to the wireless link between
the IE d and MEC server s, respectively; Pd (t) and Ps(t)
denote the transmission power allocated by the IE d andMEC
server s, respectively; and N0 is the Gaussian noise power
spectrum density.

In contrast, the data transfer rate in a wired network
corresponds to the link bandwidth. Thus, the uplink data
rate WU

s,r (t) and downlink data rate WD
s,r (t) of the wired

83156 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

TABLE 3. Notation list.

connection between MEC server s and MEC server r in time
slot t are obtained as follows:

WU
s,r (t) = BUs,r (t), (5)

WD
s,r (t) = BDs,r (t), (6)

where BUs,r (t) and BDs,r (t) denote the uplink and downlink
channel bandwidths allocated to the wired link betweenMEC
server s and MEC server r , respectively.
The uplinks from the IE to MEC server and from MEC

server to MEC server are used to transmit the task data.
TU ,R
d,s (t) represents the wireless uplink transmission delay

from IE d to MEC server s, and TU ,W
s,r (t) denotes the

wired uplink transmission delay from MEC server s to MEC
server r . Based on (3) and (5), they are calculated as follows:

TU ,R
d,s (t) =

adi (t)

RUd,s(t)
, (7)

TU ,W
s,r (t) =

adi (t)

WU
s,r (t)

, (8)

where adi (t) denotes the task data size.
Furthermore, downlinks from the MEC server to the IE

and from the MEC server to the MEC server are used to

transmit the resulting data. TD,R
d,s (t) represents the wireless

downlink transmission delay from MEC server s to IE d ,
whereas TD,W

s,r (t) denotes the wired downlink transmission
delay from MEC server r to MEC server s. Based on (4)
and (6), they are calculated as follows:

TD,R
d,s (t) =

bdi (t)

RDd,s(t)
, (9)

TD,W
s,r (t) =

bdi (t)

WD
s,r (t)

, (10)

where bdi (t) denotes the size of the task results.

3) QUEUING DELAY
The MEC server uses a task buffer to temporarily hold the
incoming tasks that have not yet been handled. The buffer
works on a first-in-first-out basis, and it is usually assumed
that its capacity is sufficiently large, such that it can always
accommodate all tasks transmitted to the MEC server. When
new tasks are offloaded to an edge server, they must be
stored in the buffer while waiting for the previous tasks to
be completed [10]. For simplicity, queue delay is usually
ignored [16], [23]. However, this approach is unreasonable,

VOLUME 11, 2023 83157

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

particularly in cases of severe congestion. According to [28],
it is typically necessary for each server to be equipped with a
minimum of four configured cores. It is assumed that the CPU
of each server possesses the capability to process four cores,
thereby enabling the simultaneous execution of four tasks in
parallel. Therefore, M/M/c/K queuing model is probably a
more realistic model because it sets the capacity of the buffer
at K = SCs(t) and the number of services is four correspond-
ing 4-core processing of the CPU, as shown in Fig. 4. The
arrival distribution of tasks follows a Poisson distribution,
and the distribution of service time follows an exponential
distribution with c = 4 as the number of parallel cores [29].
With λs defining the average arrival rate of tasks entering the
buffer and βs defining the service rate of theMEC server [11],
given the M/M/4/SCs model, the probability that i tasks
exist in the buffer is defined by Pi [30]. Subsequently, the
queue delay T qs (t) for each task i in the MEC server s buffer
can be expressed mathematically as follows:

T qs,i(t) =
SCs(t)− SAs(t)
λs(1− PSCs)

, (11)

where SCs(t) and SAs(t) correspond to the capacity and avail-
able storage of MEC server s in time slot t , then SCs(t) −
SAs(t) is number of tasks in waiting line for executing, PSCs is
probability that total SCs tasks in the queuing line.

FIGURE 4. Queuing model for IIoT task executing by MEC.

D. ENERGY CONSUMPTION MODEL
1) COMPUTATION ENERGY CONSUMPTION
The devices in the IIoT system are highly energy constrained,
whereas the MEC servers that provide computational support
for IEs also use billed power. Thus, the reduction in energy
consumption cannot be disregarded. The power in each time
unit consumed by the IE d and MEC servers s for executing
task wdi (t) is as follows [31]:

pdi (t) = ξ [f di (t)]
3,

psi (t) = ξ [f si (t)]
3,

where ξ is the effective switched capacitance which depends
on chip architecture. Therefore, the energy consumption of

the IE d or MEC server s is calculated as follows:

Edi (t) = pdi (t)T
d
i (t), (12)

Esi (t) = psi (t)T
s
i (t). (13)

2) TRANSMISSION AND RECEPTION ENERGY
CONSUMPTION
Each IE or MEC server uses the transmission energy to
support offloading or migrating tasks. The total transmission
power consumption for all connections, including wireless
and wired, comprises the energy used by the sender to trans-
mit data and the energy consumed by the receiver to gather
data. Hence, EU ,R

d,s (t) and EU ,W
s,r (t) are the total transmission

energies of the uplink between the IE d - local MEC server s
and the local MEC server s - remote MEC server r , which are
calculated as:

EU ,R
d,s (t) = TU ,R

d,s (t)Pd (t)+ T
U ,R
d,s (t)Ps(t), (14)

EU ,W
s,r (t) = TU ,W

s,r (t)Ps(t)+ TU ,W
s,r (t)Pr (t). (15)

On the other hand, an IE or MEC server require energy to
keep the ‘‘on’’ mode, means able to receive tasks or results.
ED,R
d,s (t) and E

D,W
s,r (t) are the total transmission energies of the

downlink between the IE d - local MEC server s and between
local MEC server s - remote MEC server r , respectively.
Similar to (14) and (15), ED,R

d,s (t) and E
D,R
s,d (t) are calculated

as follows:

ED,R
d,s (t) = TD,R

d,s (t)Pd (t)+ T
D,R
d,s (t)Ps(t), (16)

ED,W
s,r (t) = TD,W

s,r (t)Ps(t)+ TD,W
s,r (t)Pr (t). (17)

E. ENERGY-DELAY COST
This study investigates an IIoT network comprising several
IoT devices with limited resources for managing significant
volumes of data and computationally intensive tasks. This
adversely affects the system latency and power consumption.
Thus, it is crucial to optimize the latency and power utilization
simultaneously. We consider three computation strategies for
each IE task: IE computation, local MEC server computation,
and remote MEC server computation. Instead of focusing on
a ‘‘offload or not’’ offload strategy, we focus on multi-user
multi-MEC scenarios, which not only simplifies the choice of
‘‘offload or not’’, but also solves problem ‘‘offload to which
one’’. The offloading strategy defines the execution of a task:

xdi (t) =


xdi (t) = 0 for local IE,
xdi (t) = s for local MEC server s,
xdi (t) = r ̸= s for remote MEC server r.

(18)

In each case, the latency-energy cost function is defined as
follows.

1) IE
In this case, the tasks wdi (t) are executed only by IE d itself
and are not offloaded to any MEC server (xdi (t) = 0). The
delay of each IE is the total computing time for all tasks,

83158 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

whereas energy consumption is the energy used for task com-
putation. The energy-delay cost of task wdi (t) is calculated
based on (1) and (12) as follows:

Cd
i (t) = α · A · T di (t)+ β · B · Edi (t). (19)

where α and β are the constant weighting parameters corre-
sponding to the delay and energy costs of the task, respec-
tively. A and B are values that normalize the delay and energy
units to the cost unit, respectively, [32].

2) LOCAL MEC SERVER
The MEC server s is defined as local when it satisfies
distd,s ≤ R, where R is the radius of the area covered by each
MEC server.

In this case, all IE tasks are offloaded to the local
MEC server. Technically, xdi (t) = s, where s is the local
MEC server that connects directly to IE d . We consider the
following three types of delays:
• Transmission delay: delay of sending the task data and
receiving results via connection between IE d and local
MEC sever s

• Computation delay: delay of task computing by local
MEC server s

• Queuing delay: delay for waiting in the buffer of local
MEC server s.

According to (2), (7), (9), and (11), the total delay for com-
puting task wdi (t) in time slot t is determined as follows:

T loci (t) = T si (t)+ T
U ,R
d,s (t)+ TD,R

d,s (t)+ T qs (t). (20)

We consider energy consumption as:
• Transmission and reception energy: energy for send-
ing and receiving task and result data of the IE d and
local MEC server s.

• Computation energy: energy for computing the task by
MEC server s

Based on (13), (14), and (16), the total energy consumption
in time slot t can be determined as:

E loci (t) = Esi (t)+ E
U ,R
d,s (t)+ EU ,R

s,d (t)+ ED,R
d,s + E

D,R
s,d . (21)

The energy-delay cost of each IE task in a time slot t is
the combination of energy consumption and delay cost when
offloading the task to the local MEC server s as follows:

C loc
i (t) = α · A · T loci (t)+ β · B · E loci (t). (22)

3) REMOTE MEC SERVER
The MEC server r is defined as local when satisfy
distd,r > R, where R is the radius of the area covered by
each MEC server.

In this strategy, a remote MEC server executes the IE task.
In this case, xdi (t) = r ̸= s, where r is an MEC server
not directly connected to IE d . We consider three types of
delays:
• Transmission delay: delay of sending and receiving the
tasks and results via the connection of IE d - local MEC
server s and local MEC server s - remote MEC server r

• Computation delay: delay of task computing by remote
MEC server

• Queuing delay: delay for waiting in the buffer of remote
MEC server.

The total delay of the remote MEC server r is calculated
as:

T remi (t) = TU ,R
d,s (t)+ TU ,W

s,r (t)+ T qr (t)

+ T ri (t)+ T
D,W
s,r (t)+ TD,R

d,s (t).

In this strategy, we also consider energy consumption as:
• Transmission and reception energy: energy for send-
ing and receiving task data and result data between local
MEC server s and remote MEC server r

• Computation energy: energy for computing the task by
remote MEC server r .

The energy consumption for task calculation on a remote
MEC server r is calculated as follows:

Eremi (t) = EU ,R
d,s (t)+ EU ,W

s,r (t)

+ Eri (t)+ E
D,W
s,r (t)+ ED,R

d,s (t).

Therefore, the total energy-delay cost Cremote
i (t) for each

IE task is calculated as follows:

Crem
i (t) = α · A · T remi (t)+ β · B · Eremi (t). (23)

F. PROBLEM FORMULATION
From the described cases, the general equation for the
energy-delay cost of each task wdi (t) generated by IE d
in time slot t , denoted by Cd

i (t), can be defined as
follows:

Cd
i (t) =


Cd
i (t) for xdi (t) = 0,

C loc
i (t) for xdi (t) = s,

Crem
i (t) for xdi (t) = r ̸= s,

(24)

where s and r denote local and remote MEC servers,
respectively.

The objective of this study is to minimize the average
energy-delay cost of the entire system in T time slots, includ-
ing IEs andMEC servers, considering the resource limitations
and sensitive delay requirements. The objective function is
expressed as:

min
xdi (t)

T∑
t=1

D∑
d=1

Id∑
i=1

1
T

1
D

1
Id

Cd
i (t). (25)

We also present the following constraints:

C1 : 0 ≤ xdi (t) ≤ S, (26)

C2 : Pmin ≤ Pd (t),Ps(t) ≤ Pmax , (27)

C3 :
D∑
d=1

BUd,s ≤ B
U
max ,

D∑
d=1

BDd,s ≤ B
D
max , (28)

VOLUME 11, 2023 83159

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

C4 : SAs(t) ≥
D∑
d=1

Ssd (t) S
s
d (t) ≥ 0, (29)

C5 : FAd (t) ≥
Id∑
i=1

f di (t) f
d
i (t) ≥ 0,

FAs(t) ≥
D∑
d=1

f si (t) f
s
i (t) ≥ 0, (30)

C6 : EAd (t) ≥
Id∑
i=1

Edi (t) (31)

C7 : {T di (t),T
loc
i (t),T remi (t)} ≤ τ di . (32)

Constraint 1 guarantees that the offloading decision can
select one of the three options: IE, local MEC server,
or migrate to a remote MEC server. Constraint 2 states
that the transmission and reception powers of the IEs and
MEC servers should not be exceeded; Pmax and Pmin are
the lowest and highest acceptable powers for the system to
operate stably [33], respectively. According to Constraint 3,
the total downlink and uplink bandwidths between all the IEs
and the local MEC server should not exceed the maximum
bandwidth. We denote Ssd (t) as the storage resource allocated
by the MEC server s for IE d in time slot t . Constraint 4 states
that the storage resources used for all tasks in time slot t must
not exceed the storage buffer’s availability, and the storage
resources allocated must be positive. We denote FAs(t) and
FAd (t) as the the available computing resources of the MEC
server s and IE d . The total computing resources allocated to
all tasks must not exceed the amount of resources presently
available, as specified by Constraint 5 [23].We denoteEAd (t)
as the available energy resource of IE d in time slot t , and
Constraint 6 indicates that the total energy resource allocated
to all tasks must not exceed the number of resources currently
available of IE d [34]. The energy resources of MEC servers
are unlimited, indicating that there are no constraints on their
energy resources of MEC servers. Constraint 7 states that the
maximum completion duration for each task is no longer than
the required time [23]. In the next section, we demonstrate
that optimization problem (25) satisfies the characteristics of
a Mixed-Integer Nonlinear Programming (MINLP) problem.
Proposition 1: The optimization problem (25) is MINLP.
Proof:Mathematically, the mixed integer nonlinear pro-

gramming (MINLP) problem looks like:

Maximize or Minimize:

f (x)+ d(y)

Subject to:

g(x)+ h(y) α 0,

L ≤ x ≤ U ,

y = {0, 1, 2, . . .},

where x is a vector of variables that are continuous real
number, f (x) + d(y) is the objective function, g(x) +
h(y) represents the set of constraints, α is some mixture

of ≤, =, and ≥ operators, L and U are vectors of lower and
upper bounds on the variables.

To be a MINLP problem, problem (25) needs to have the
characteristic properties of non-linearity and the presence of
integer variables. Due to the multiplication of delayed cost
Cd
i (t) with other fractions and the subsequent summation,

the objective function incorporates non-linear terms. In addi-
tion, it should be noted that the offloading decision variable,
denoted as xdi (t), is an integer type, whereas the resource
allocation and power control mechanisms exhibit dynamic
variability. Consequently, objective function (25) is classified
as a MINLP problem.

The computational complexity of MINLP problems results
from the complex process of searching for an optimal solu-
tion, which can prove to be a daunting task due to the
combination of non-linearity and integer variables, especially
given the high latency requirements of IIoT tasks. The afore-
mentioned solution, on the other hand, requires the controller
to make judgments after collecting information. Therefore,
we propose a DRL technique based on the integration of
DDPG and PER buffer to reduce the energy-latency cost
of the system. A carefully trained DRL model promises to
deliver optimal results in the shortest possible time.

IV. METHODOLOGY
This section introduces the proposed framework for task
offloading and resource allocation to an MEC federation
system in an IIoT network. The optimization problem (25)
is first modeled as an MDP problem. Eventually, the DDPG
model is considered a solution to the MDP problem owing
to its capacity to operate with large data dimensions and
adapt to highly dynamic system states. Nevertheless, DDPG
has several issues owing to the complexity of the training
phase. Therefore, we propose combining DDPG with PER to
enhance the speed and efficiency of DDPG training. Finally,
we present the proposed DDPG-PER-based task offloading
and resource allocation framework for optimizing the power
consumption and delay of an MEC-enabled IIoT network.

A. MDP
To apply DRL to solve the optimization problem, we define
five elements of MDP: state space S, action space A, state
transition probability P, reward function R, and discount
factor γ . As shown in Fig. 5, when time slot t begins, the agent
must decide on the action by choosing at ∈ A based on the
current system condition st ∈ S. After performing this action,
the environment updates the next state st+1 of the system and
receives a reward as feedback from the environment to eval-
uate the effectiveness of the action. Based on the interaction
between the agent and environment, the agent can develop
a policy µ that maps from state to action, µ: S → P(A),
meaning that at = µ(st).

1) STATE SPACE
When time slot t begins, the agent obtains information regard-
ing the state of the current system environment.We denote the

83160 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 5. Agent-Environment interaction in MDP.

system state in time slot t as follows:

st = {K (t),D(t),E(t),F(t), S(t)},

where K (t) and D(t) indicate the location and size of all
tasks in the system, respectively, E(t) and F(t) represent
the available power and computing resources of all IEs and
MEC servers, respectively, and S(t) is the available storage
resources of all MEC servers.

2) ACTION SPACE
After considering the current state st , the agent makes the
following decision:

at = {P(t), f (t),B(t), s(t),X (t)},

where X (t) indicates all task offloading decisions, and P(t),
f (t), B(t), and s(t) represent the allocated power, comput-
ing, bandwidth, and storage resources in each time slot,
respectively. Considering that DDPG requires action to be
continuous, we represent the action that offloads the decision
of each task as

{e0, e1, . . . , eS},

s.t.
S∑
i=0

ei = 1,

where ei̸=0 is the probability that the task is offloaded to the
MEC server i, and e0 indicates that the task is executed by
the IE itself. Hence, the offloading variable for each task is
determined by the index of the largest probability value in
{e0, e1, . . . , eS}.

3) STATE TRANSITION PROBABILITY
p(st+1|st , at) represents the probability of st+1 given st and
the chosen at . Moreover, the agent has no prior knowl-
edge of p(st+1|st , at), which is solely determined by the
environment [24].

4) REWARD FUNCTION
The reward rt represents the immediate reward received when
performing action at in the state st . The objective of (25) is to
minimize the energy-delay cost. Therefore, we assume that
the reward rt in each time slot t is negative for the average

cost of the IE task, as follows:

rt = −
D∑
d=1

Id∑
i=1

1
D

1
Id

Cd
i (t). (33)

Owing to the large dimensionality of the optimization
problem, the DRL method is considered an approach for
finding the optimal policy that maximizes the long-term
reward Rt =

∑T
t=1 γ t−1rt . As mentioned in Section I,

since Deep Q-Learning solely focuses on discrete actions,
DDPG is able to overcome the limitations of dealing with
continuous domains. Owing to the continuity of the state
space and actions in themodeledMDP problem, we introduce
a DDPG-based approach to solve the resource allocation
problem.

B. DDPG ALGORITHM
The DDPG architecture comprised four deep neural networks
(DNNs) and four trainable parameters for distinct purposes.
The actor network θµ is responsible for optimizing the policy
µ(θµ) that provides the optimal action for a given state,
whereas the critic network θQ critiques the quality of an
action as indicated by itsQ-value. In addition, the target actor
network θµ′ and the target critic network θQ

′

are time-delayed
versions, allowing the model to maintain more consistent
estimated targets. The operation of DDPG is described in
detail below.

Each policy µ defines an action-state pair value function
Qµ(st , at) which indicates the expected return of action at
execution given state st . Based on Bellman’s equation [23],
Q-value is:

Qµ(st , at) = E[rt + γQ(st+1, µ(st+1)],

whereas the return is determined by

R|st , µt = rt + γQ(st+1, µ(st+1).

Thus, the outputs of the actor and critic networks are deter-
mined as follows:

µ(st |θµ) ≈ µ∗(st),

Q(st , at |θQ) ≈ Q(st , at).

Additionally, random noise ϱt is added to the action output
of the actor network at each time step to obtain better action
exploration.

Our training sample data is obtained from a replay memory
buffer R of finite size V . The tuple {st , at , rt , st+1} is saved
in R for each time slot t . By randomly selecting a mini-batch
{si, ai, ri, si+1} of data from R, the critic and actor networks
update the parameters for each time slot t . LetM represent the
amount of data in each mini-batch. The difference between
Q-value and targetQ-value δ, called temporal difference error
(TD-error), is calculated as follows:

δ = Q(si, ai|θQ)− yi. (34)

where yi denotes target Q-value:

yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ
′

). (35)

VOLUME 11, 2023 83161

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

Thus, the loss function of the critic network is:

L(θQ) =
1
M

δ2, (36)

The critic network is updated using the Adam opti-
mizer [35] to minimize the loss function. Reference [36]
showed that the policy gradient may assist in obtaining the
highest anticipated reward provided that the model parame-
ters are updated using the following gradient equation:

h

θµ

Jµ∗ =
1
M

M∑
i=1

h

ai

[Qµ(si, ai|θQ)
h

θµµ(si|θµ)

]. (37)

The DDPG algorithm uses θµ and θQ of the current actor
and critic networks and soft updates them as follows:{

θµ′
← (1− δ)θµ′

+ δθµ

θQ
′

← (1− δ)θQ
′

+ δθQ.
(38)

C. PER
The experience replay buffer is a crucial component of
DDPG because it utilizes previous experience to prevent
the high correlation of input data [25]. However, DDPG
uses uniform experience playback and treats all samples as
equally important. This is unreasonable, because it ignores
the variance in the results for each sample. The PER-assisted
DDPG approach selects a metric with an absolute TD-error
to depict the value of each sample accurately. To avoid
overfitting, stochastic prioritization was used to select the
experiences. In addition, importance-sampling weights have
been employed to correct the state visitation bias produced by
prioritized sampling [25].
In stochastic prioritization, the probability of the sampling

experience j is defined as follows [25]:

P(j) =
Duj∑
i D

u
i
, (39)

where Dj = 1
rank(j) > 0 indicates the priority of experience j

and rank(j) is the rank of experience j in the replay buffer. The
offset value ϵ is added to the priority to prevent case priority
from being equal to 0; thus, Dj = |δj| + ϵ. The absolute
TD-error of experience is considered as the priority index
and is used to demonstrate the importance of experience.
However, this model only replayed the experience with the
highest TD-error priority, which led to a loss of diversity [37].

Furthermore, the IS weight is introduced to reduce the
magnitude of the gradient and thus make the training process
more stable. The IS weight [26] was calculated as follows:

wj =
1

V v.P(j)v
, (40)

where V is the buffer size and v ∈ [0, 1]. In addition,
it normalizes the weights by 1

maxiwi
to scale the update down-

wards [25]. Therefore, the differentiation loss function is
transformed as follows:

wj
h

θ
Q
1

L(θQ1) = wj.δj.
h

θ
Q
1

.Q(s, a|θQ1).

FIGURE 6. Illustration of the performance of different training processes.

Fig. 6 illustrates the convergence of different experience
sampling methods such as uniform sampling, PER without
IS, and PER with IS. The space curve created by the loss
function of all events is indicated by contour lines. The
PER with IS weights enables the replay to gravitate toward
encounters with higher TD-error magnitudes. Because of the
restrictions imposed by the IS weights, the training process
was quite steady. Without IS weights, the PER obtains larger
step sizes and moves toward a local optimum solution. More-
over, training procedures can fluctuate. The PER offers a
more comprehensive and reliable solution to DDPG issues
by integrating IS weights to accelerate the training process.

D. DDPG-PER-BASED ALGORITHM
To address the issues of task offloading and resource allo-
cation for the MEC federation system in the IIoT network,
we propose a framework based on DDPG-PER. This model
is implemented in the controller, which is responsible for
receiving the system state and making optimal decisions.
As shown in Fig. 7, the proposed framework includes four
DNNs: the actor, critic, target actor, and target critic.

The proposed training procedure comprises H episodes.
The system state is initialized at the beginning of each
episode, and the optimal resource allocation option is deter-
mined after the last episode. In each episode, the model is
trained for a duration T . At the beginning of each time slot,
the MEC controller provides a noise-added output to the
agent network. This involves determining where to execute
all tasks and the resources allocated to perform them, includ-
ing computation, transmission, and storage resources. The
system then aggregates the delay and energy usage for each
task in the IIoT system. The MEC controller calculates the
reward for time slot t using (33) at the end of time slot t
and gathers the system state for time slot t + 1. s(t), a(t),
r(t), and s(t + 1) are stored for future training in replay
buffer R. The model updates the neural networks at each
time slot after V first time slots. First, the model revises the
priority of M experiences, where M is the mini-batch size.
Each experience j is sampled with a probability derived from

83162 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

Algorithm 1 DDPG-PER-Based Algorithm
1: Input: Tasks size, Tasks location, Resource available
2: Output: Cost optimization, Task offloading and Resource allocation strategy
3: Initialize critic Q(s, a|θQ), weight θQ and actor µ(θµ), weight θµ

4: Initialize target critic Q′, weight θQ
′
← θQ and target actor µ′, weight θµ′

← θµ

5: Initialize replay buffer R, size V , mini-batch M
6: Set priority D1 = 1, exponents u, v
7: Initialize the number of episodes H
8: for episode = 1,H do
9: Initialize random process ϱt
10: Initialize the system environment and receive initial observation state s1
11: for t = 1,T do
12: Select action at = µ(st |θµ)+ ϱt
13: Execute action at and observe reward rt and new state st+1
14: Store experience (st , at , rt , st+1) in R, set maximal priority Dt = maxi<tDi
15: if t > V then
16: for j = 1,M do
17: Sample experience j with probability (39)
18: Compute IS weight (40)
19: Set target Q-value (35)
20: Compute TD-error (34)
21: Update the priority of experience j according to absolute TD-error |δj|
22: end for
23: Update critic network by minimizing the loss function (36)
24: Update actor network using the sampled policy gradient (37)
25: Update target networks (38)
26: end if
27: end for
28: end for

FIGURE 7. MEC federation resource allocation framework based on DDPG-PER.

Equation (39). The IS weight, target Q-value, and TD-error
are then calculated using Equations (40), (35), and (34),
respectively. Finally, the priority of experience j is computed
based on the absolute value of the TD-error. After updating
the priority in the priority experience buffer, the model min-
imizes the loss function (36) using the TD-error calculated
above and weights while training the actor network with the
sampled policy gradient (37). According to Equation (38), the
model updates the target actor and critic networks. Details are
presented in Algorithm 1.

V. EXPERIMENTS
In this section, we evaluate the performance of the proposed
framework in terms of task offloading and resource allo-
cation. Initially, investigations are conducted to determine
the impact of certain parameters such as the learning rate
and number of IEs in the system on the training process.
In addition, the optimize results of the DDPG-PERmodel are
compared with those of other strategies to demonstrate that
the proposed method can simultaneously improve the latency
and energy consumption of the IIoT system. Our simulation

VOLUME 11, 2023 83163

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

is conducted on a PC with a 2.60 GHz Intel(R) Core(TM)
i5-11400F processor, 16 GB of RAM, and Windows 11
(64-bit). The DRL methodology under consideration is exe-
cuted using Python 3.7, Tkinter 8.6 and Tensorflow 2.6. The
environment is established in Anaconda.

A. EXPERIMENTAL SETTINGS
This study examined an MEC-enabled IIoT network that
allows MEC servers to collaborate. This IIoT system has ten
500-meter-radius industrial zones, each of which is covered
by a single MEC server [23]. In each of these areas, the
IIoT devices are randomly deployed and connected only to
the MEC server of that region, which is called the local
MEC server. There are two types of connections between
devices in the system: a wireless connection between the
IE and local MEC server and a wired connection between
the MEC servers. The wireless uplink and downlink have
the same bandwidth capacity of 20 MHz [10], while the
maximum rate of the wired connections is 150 MBps [38].
Each IE has a battery capacity of 1000 J and a guaranteed
power threshold of 20 J [23]. We set the buffer size of
each MEC server to 25 GB, according to [39]. Each IIoT
device with limited resources has a computational capability
of 5 GHz [40], whereas the MEC server has a capacity of
25 GHz [40]. In our experiments, we separated the system
operation into 3000 time periods. Because IIoT devices must
conduct monitoring-related tasks that require continuous data
collection and processing, the length of each time slot is set
to 0.1 seconds to guarantee efficient system performance.
IEs produce tasks in each time slot in accordance with a
uniform distribution generated in the interval [1, 10] [23].
In addition, we assume that the input and output sizes of
all tasks are 1 MB and 1 MB [7], respectively. According
to [33], the effective transmission power range of a system
is [5, 38] dBm. The power spectral density of the Gaus-
sian noise is −174 dBm/Hz [40]. At the conclusion of the
episode, the reward value is obtained before the completion of
the procedure. The key simulation parameters are presented
in Table 4.

In the proposed DDPG-PER model, the objective of the
training process is to determine the optimal decision for task
offloading and resource allocation for each IE task to mini-
mize the energy-delay cost. Ourmodel comprises four 5-layer
networks with an input layer, an output layer, and three hid-
den layers. Technically, the DDPG-PER continually updates
the model throughout system operation. Consequently, the
proposed framework adapts to continually changing environ-
ments. Additionally, at each step, the exponential moving
average (EMA) [41] model is utilized to evaluate the trends
of the parameters during training. Based on this information,
the model-favoring training parameters are modified. Both
the batch and mini-batch size values are 32. Training begins
as the sample fills the memory, and the DNN is trained at
each step to acquire a sufficient number of fresh data samples.
Because DRL is a self-learning method, the dataset, known as

TABLE 4. System model parameters.

TABLE 5. Training model parameters.

experience in DRL, is created by exploring the surroundings.
Consequently, the dataset in this study is defined as the
mini-batch that is sampled from the replay buffer on a regular
basis. The model parameters are presented in Table 5.

B. PARAMETER ANALYSIS
We first investigate the impact of parameters such as the
learning rate and discount factor on the training process of
the DDPG-PER-based resource allocation scheme. This eval-
uation enables the selection of the experimental parameters
that best fit the model. In addition, we assess the effect of
the number of IEs and the weights of latency and power
consumption on the results of the proposed method.

1) IMPACT OF LEARNING RATE
The DDPG-PER model is composed of neural networks to
overcome the issue of data dimensionality and boost the
performance of system. The learning rate defines the pace
at which the model adapts to training data. Thus, select-
ing an inadequate learning rate affect the convergence or
performance of the model. Fig. 8 shows the energy-delay
cost incurred during training at various learning rates. The
experiments are conducted using specific learning rates of
0.01, 0.001, and 0.0001. In the first 10 epochs, it is evident

83164 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 8. Impact of learning rate on training process.

that the cost significantly decreases with learning rates of
0.01 and 0.001, whereas it decline slightly with a learning
rate of 0.0001. In the next 10 epochs, the model with a
learning rate of 0.001 reduces the energy-delay cost from
approximately 250 to 150. Meanwhile, at epoch 20, the costs
corresponding to the learning rates of 0.01 and 0.0001 are
200 and 300, respectively. From epoch 20 onward, the models
with varying learning rates exhibit the same declining pat-
tern. As seen in Fig. 8, when the learning rate is 0.001, the
average energy-delay cost curve converges to a value of 83 at
episode 50. Meanwhile, after 50 episodes with learning rates
of 0.01 and 0.0001, the model cannot converge and has cost
values of 141 and 236. The experimental results indicate that
excessively high or inadequate learning rates negatively affect
the convergence of the model. When the learning rate is too
low, the model updates a negligible quantity of training data
information. Therefore, the training process requires more
time for the model to achieve the highest performance. This
is demonstrated by the fact that the model with a learning
rate of 0.0001 has a lower cost reduction per epoch than the
other two cases during the same period. Alternatively, if the
learning rate is too high, the model may surpass the optimum
point to achieve the maximum performance. In conclusion,
the experimental results suggest that 0.001 is the optimal
learning rate for the proposed model.

2) IMPACT OF DISCOUNT FACTOR
In reinforcement learning methods, the discount factor is a
major factor used to evaluate the influence of future values.
Specifically, a discount factor closer to 1 suggests that future
gains are more significant than current rewards, whereas a
discount factor closer to 0 indicates that the present rewards
are favored [23]. Therefore, determining the appropriate dis-
count factor helps to optimize the cumulative reward of the
model. We conduct experiments to investigate the conver-
gence of the DDPG-PER model with the discount factors of
0.1, 0.5, and 0.9. In these simulations, we use the previously
specified value of 0.001 for the learning rate. As shown in
Fig. 9, the model with a discount factor of 0.9 drastically
reduces the energy-delay cost after 20 epochs, from 350 to

FIGURE 9. Impact of discount factor on training process.

FIGURE 10. Impact of weight on delay and energy consumption.

approximately 150. The cost then decreases steadily until
the model converges at epoch 50. The cost value of the
model declines slightly during training for discount factors of
0.1 and 0.5 and does not converge at epoch 50. Even with a
discount factor of 0.1, the training process becomes unstable
when the cost value fluctuates significantly from epoch 10 to
epoch 40. The rationale for this situation is that the model
focuses only on benefits in the immediate stage. This prevents
themodel from obtaining significantly greater future rewards.
For the proposed model, a discount factor of 0.9 is the most
appropriate value.

3) IMPACT OF THE ENERGY-DELAY WEIGHT
With IIoT systems comprising many devices with limited
resources, it is crucial to minimize both latency and power
consumption simultaneously. Nevertheless, the priority of
optimum delay or power consumption is determined by the
functionality of the system. For systems that do not require
stringent processing deadlines for tasks, energy optimization
becomes more significant because it contributes to a more
stable system operation. In contrast, systems that demand low
latency prioritize lowering the task processing time. In this
study, we define the energy-delay cost as the cost of execut-
ing each IE task, considering both energy consumption and

VOLUME 11, 2023 83165

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

latency simultaneously, as shown in Equation (24). Specif-
ically, the energy-delay weight is the ratio of the energy
consumption to the delay, which has a significant impact
on the cost per task. Therefore, we conduct experiments
to evaluate the effect of the energy-latency weight on the
average latency and energy consumption of each IE task. The
examination is conducted based on weight ratios of 1 : 9,
5 : 5, 7 : 3, and 9 : 1. As seen in Fig. 10, it is evident that
the 1 : 9 ratio incurs the highest cost of 120.3. Each task
in a system with the 5 : 5 ratio costs 91.22, whereas that
of the 9 : 1 ratio is 86.1. Compared with the other ratios,
the energy-delay cost of a task in the IIoT system using the
7 : 3 ratio is the lowest, reaching only 82.75. Consequently,
the weight ratio 7 : 3 is suitable for the proposed model.

C. COMPARISON EXPERIMENTS
This study considers task offloading and resource allocation
for IIoT networks enabled by MEC. The optimal objective of
the proposed method is to minimize energy consumption and
delay concurrently, both of which are crucial for resource-
constrained systems. Therefore, we conduct experiments to
evaluate themodel performance under different scenarios. the
comparison is conducted based on two aspects: task offload-
ing and resource allocation.

The following approaches are compared in terms of task
execution.

• IE: The IE task is handled by IE itself, and MEC servers
do not support it.

• Dedicated MEC: The IE task is offloaded to the MEC
server directly linked to IE, and theMEC servers operate
independently.

• MEC federation with greedy scheme (Greedy
MECF): The IE tasks can be transferred to local MEC
server, andMEC servers collaborate only when the local
MEC server is overloaded.

• MEC Federation with our scheme (Optimal MECF):
The IE task may be transferred to distant MEC servers,
and the MEC servers collaborate to get the optimal
energy-delay cost even if the local MEC server has not
yet been overloaded.

This investigation compares various optimal decision-
making approaches using the current state of the IIoT system
as the input. The optimal decision-making process encom-
passes both resource allocation and task offloading.

• Random Resource Allocation (RRA): To reduce the
complexity of the model, resources for IEs and MEC
servers are allocated randomly, and then the task offload-
ing decision is given by the DDPG-PER model.

• Uniform Resource Allocation (URA): The resources
for the IE and MEC servers are set as the average of the
upper and lower bounds.Additionally, the resources allo-
cated for processing each task are distributed equally.
The offloading decision is determined by the DDPG-
PER algorithm.

TABLE 6. Average delay (s) of task execution comparison.

• DDPG: The DDPG model [16], [23] determines
the optimal resource allocation and task offloading
decisions.

• DDPG-PER: The DDPG-PER model is responsible for
making the optimal decision in terms of resource alloca-
tion and task offloading.

Specifically, we investigate the four decision-making
approaches for each of the four task-processing strategies
listed above. In addition, studies have been conducted using
IEs of 10, 20, 30, and 40. This enables a more comprehensive
review of the model performance under various scenarios.

1) PERFORMANCE COMPARISON OF DELAY
Table 6 presents the comparative results for the average exe-
cution latency. It is evident that when the number of IEs
in a system increases, the average latency to accomplish a
task increases with every algorithm. Owing to limited sys-
tem resources, increasing the number of IEs exhausts the
resources allocated to each task, leading to greater delays.
In addition, when using a dedicated MEC and MEC feder-
ations, the average latency for each task decreased consid-
erably. In particular, with an IIoT system comprising 10 IEs
using DDPG-PER, the latency for a task with our proposed
system is 0.86 s, whereas the average latency for a task
processed in the IE, Dedicated MEC, and Greedy MECF is
4.26, 1.01 and 0.90 s, respectively. Systems using the DDPG,
URA and RRA approaches exhibited similar patterns. With

83166 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 11. Average energy-delay cost of task execution comparison in
IIoT network containing (a) 10 IEs, (b) 20 IEs, (c) 30 IEs, and (d) 40 IEs.

MEC servers, the issue of task management in an IIoT system
can be resolved effectively using MEC servers. Furthermore,
the Optimal MECF with an optimal policy is the best strategy
for reducing the latency in all scenarios.

TABLE 7. Average energy consumption (J) of task execution comparison.

In contrast, DDPG-PER outperforms the other methods
in terms of optimizing the processing time for each task.
As demonstrated in Table 6, the proposed method consis-
tently produced decreased latency in all settings compared
with RRA, URA and DDPG. For a system with 40 IEs, where
tasks were handled solely in the IE, the average latencies
for RRA, URA, DDPG and DDPG-PER are 18.5, 17.98,
17.30 and 17.28 s, respectively. When the local MEC server
handles the processing MEC tasks, the minimal delays for
resource allocation via RRA, URA, DDPG and DDPG-PER
are 5.58, 5.51, 4.19 and 4.12 s, respectively. With the IIoT
system combined with the Optimal MECF, the average laten-
cies of each task with RRA and URA are 4.52 and 4.46 s,
respectively, whereas those of DDPG-PER and DDPG are
3.37 and 3.36 s, respectively. This demonstrates that resource
allocation using DDPG-PER minimizes the system delay
most effectively.

2) PERFORMANCE COMPARISON OF ENERGY
CONSUMPTION
In addition to the latency of the system, we conduct studies
to determine the performance of power consumption opti-
mization. The experimental results are presented in Table 7.
Similar to the delay, energy consumption is correlated with
the number of devices in the system. However, in contrast
to delay optimization, the energy usage in circumstances in
which the IE handled tasks by itself reached a minimal value.

VOLUME 11, 2023 83167

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

FIGURE 12. Convergence comparison.

In the example of an IIoT system with 10 IEs using RRA, the
average power consumption of each task while using simple
IE is 32.5 J, whereas the average power consumption of
each task when using the Optimal MECF and Greedy MECF
is 40.1 and 42.8 J. Dedicated MEC is the least efficient,
requiring as much as 45.3 J per task. This pattern is observed
as the number of IEs in the system increases. This is due
to the task management of each strategy. For a system that
simply processes tasks using IE, the energy consumption is
only due to computation, whereas data transmission increases
the energy consumption when MEC servers are involved.
The greedy and optimal MECF use less energy per task than
dedicated MEC. This demonstrates that delegating tasks to
distant MEC servers is more energy-efficient than using only
localMEC servers. However, the utilization of RRA andURA
combined with the MEC federation consumes more energy
than task processing alone in the IE. This demonstrates the
inefficacy of these methods in the context of the MEC feder-
ation system.

According to Table 7, DDPG-PER and DDPG allocates
resources more effectively than URA and RRA. In the case
of the combined IIoT system with the Optimal MECF which
includes 10 devices, each task requires an average of 40.1
J with RRA and 30.5 J with URA. Nevertheless, that of
DDPG-PER is only 25.7 J. Moreover, unlike RRA and URA,
DDPG-PER and DDPG work effectively with the MEC fed-
eration approach. With a network of 40 IIoT devices, one
task processed by the Optimal MECF consumes only 105.2J
on average, compared with 117.5, 123.78, and 108.8 J for
one task handled exclusively by the IE, Dedicated MEC and
Greedy MECF. In all experimental settings, the proposed
DDPG-PER resource allocation strategy consistently outper-
forms the other methods in terms of energy consumption
optimization.

3) PERFORMANCE COMPARISON OF ENERGY-DELAY
By optimizing both the latency and power consumption
simultaneously, DDPG-PER for Optimal MECF offers the

highest performance. As demonstrated in Fig. 11, the tasks
handled by the Optimal MECF consistently have the low-
est average energy-delay cost. The values of energy-delay
cost optimization by DDPG are also good performance as
DDPG-PER. This benefit is realized using the computational
capacity and available resources of MEC servers across the
entire network, as opposed to merely processing at the IIoT
device or local MEC server. In a system with 10 IEs applying
RRA, the average energy-delay cost for each task executed
by only the IE is 340, compared to 144, 140 and 134 for
the Dedicated MEC, Greedy MECF and Optimal MECF,
respectively. Similar to RRA, the resource allocation by URA
for the 10-IE system resulted in costs of 322, 120, 114 and
105when executing tasks solely with the IE, DedicatedMEC,
Greedy MECF and Optimal MECF, respectively. In addition,
DDPG-PER consistently outperforms the other techniques in
all experimental scenarios. For 40 IIoT devices in the MEC
federation system, resource allocation via RRA and URA
incurs average costs of 461 and 418, respectively, whereas
DDPG and DDPG-PER cost 329. Similarly, when there are
20 IEs, the energy-delay costs for the systems using RRA,
URA, DDPG, and DDPG-PER are 229, 198, 169, and 166,
respectively. This deficiency of RRA and URA is due to
resource allocation limitations, such as randomization with
RRA and equal distribution with URA. By leveraging deep
learning models to solve complicated optimization problems,
DDPG and DDPG-PER can effectively allocate resources,
as demonstrated by the experimental results. Thus, the pro-
posed DDPG-PER approach for task offloading and resource
allocation in an MEC federation system is an ideal solution
for concurrently optimizing the latency and energy consump-
tion of the IIoT network.

4) PERFORMANCE COMPARISON OF CONVERGENCE
In addition to evaluating the performance of each method,
it is crucial to investigate convergence. The results of the
comparison of the convergence rates of the strategies are
shown in Fig. 12. During training, the energy-delay cost of the

83168 VOLUME 11, 2023

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

RRA fluctuates significantly, indicating the instability of this
model. Owing to the random resource allocation characteris-
tics of RRA, the optimal outcomes of this approach directly
correlate with the unpredictability of allocated resources. The
URA is substantially more stable than the RRA. However,
equal allocation of all tasks byURAdoes not reflect the actual
state of the IIoT system. Thus, the performance of this model
is insufficient. It is evident that the energy-delay cost of a sys-
tem using DDPG-PER is always lower than that of systems
employing other approaches. At epoch 50, the DDPG-PER
model starts to converge with an energy-delay cost of 83,
whereas those of the DDPG, URA, and RRA are greater than
100. After 100 episodes, all methods converge with the values
105.8, 134.8, 82.7, and 82.3 corresponding to RRA, URA,
DDPG, and DDPG-PER, respectively. As shown in Fig. 12,
the speed requires to obtain the optimal DDPG-PER is higher
than DDPG. Hence, DDPG-PER is the most effective method
in terms of convergence.

VI. CONCLUSION
In this study, we introduced an MEC federation paradigm for
IIoT networks that enables IEs to offload computationally
intensive tasks to MEC servers. Instead of merely enabling
tasks to be handled on a localMEC server, this system enables
tasks to be transferred to distant MEC servers, resulting in
more effective system resource utilization. In contrast to pre-
vious research, this study incorporates all relevant practical
considerations within the framework of an optimal decision-
making process. This facilitates the implementation of the
system in a practical context. Nonetheless, identifying the
appropriate allocation of resources while lowering system
latency in the context of a constantly changing state is chal-
lenging. This problem was represented as an MDP with
realistic restrictive constraints. We proposed a task offload-
ing and resource allocation framework for MEC federation
in IIoT systems based on DDPG-PER. Extensive experi-
ments showed that the federation MEC approach is more
effective than simply employing an IE or a dedicated MEC
server. In addition, investigations have demonstrated that
DDPG-PER outperforms other resource allocation strate-
gies by decreasing both power consumption and system
delay. In the future, while optimizing IIoT system resources,
we may consider the mobility of devices based on this
research.

REFERENCES
[1] M. Aledhari, R. Razzak, B. Qolomany, A. Al-Fuqaha, and F. Saeed,

‘‘Biomedical IoT: Enabling technologies, architectural elements, chal-
lenges, and future directions,’’ IEEE Access, vol. 10, pp. 31306–31339,
2022.

[2] N. Aung, S. Dhelim, L. Chen, A. Lakas, W. Zhang, H. Ning, S. Chaib,
andM. T. Kechadi, ‘‘VeSoNet: Traffic-aware content caching for vehicular
social networks using deep reinforcement learning,’’ IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 8, pp. 8638–8649, Aug. 2023.

[3] J. J. Kang, W. Yang, G. Dermody, M. Ghasemian, S. Adibi, and
P. Haskell-Dowland, ‘‘No soldiers left behind: An IoT-based low-
power military mobile health system design,’’ IEEE Access, vol. 8,
pp. 201498–201515, 2020.

[4] J. Okwuibe, J. Haavisto, I. Kovacevic, E. Harjula, I. Ahmad, J. Islam,
and M. Ylianttila, ‘‘SDN-enabled resource orchestration for indus-
trial IoT in collaborative edge-cloud networks,’’ IEEE Access, vol. 9,
pp. 115839–115854, 2021.

[5] Y. Yang, Y. Miao, Z. Ying, J. Ning, X. Meng, and K. R. Choo, ‘‘Privacy-
preserving threshold spatial keyword search in cloud-assisted IIoT,’’ IEEE
Internet Things J., vol. 9, no. 18, pp. 16990–17001, Sep. 2022.

[6] S. Qi, W. Wei, J. Cheng, Y. Zheng, Z. Su, J. Zhang, and Y. Qi, ‘‘Secure
and efficient item traceability for cloud-aided IIoT,’’ ACM Trans. Sensor
Netw., vol. 18, no. 4, pp. 1–24, Nov. 2022.

[7] F. Fu, Z. Zhang, F. R. Yu, and Q. Yan, ‘‘An actor-critic reinforcement
learning-based resource management in mobile edge computing systems,’’
Int. J. Mach. Learn. Cybern., vol. 11, no. 8, pp. 1875–1889, Aug. 2020.

[8] S. Bebortta, D. Senapati, C. R. Panigrahi, and B. Pati, ‘‘Adaptive per-
formance modeling framework for QoS-aware offloading in MEC-based
IIoT systems,’’ IEEE Internet Things J., vol. 9, no. 12, pp. 10162–10171,
Jun. 2022.

[9] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, ‘‘A novel
framework for mobile-edge computing by optimizing task offloading,’’
IEEE Internet Things J., vol. 8, no. 16, pp. 13065–13076, Aug. 2021.

[10] Z. Jin, C. Zhang, Y. Jin, L. Zhang, and J. Su, ‘‘A resource allocation
scheme for joint optimizing energy consumption and delay in collaborative
edge computing-based industrial IoT,’’ IEEE Trans. Ind. Informat., vol. 18,
no. 9, pp. 6236–6243, Sep. 2022.

[11] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. P. C. Rodrigues, ‘‘SDN-
assisted mobile edge computing for collaborative computation offloading
in industrial Internet of Things,’’ IEEE Internet Things J., vol. 9, no. 23,
pp. 24253–24263, Dec. 2022.

[12] X. Dai, Z. Xiao, H. Jiang, M. Alazab, J. C. S. Lui, S. Dustdar, and
J. Liu, ‘‘Task co-offloading for D2D-assisted mobile edge computing in
industrial Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 480–490, Jan. 2023.

[13] D. Wei, N. Xi, X. Ma, M. Shojafar, S. Kumari, and J. Ma, ‘‘Personalized
privacy-aware task offloading for edge-cloud-assisted industrial Internet of
Things in automated manufacturing,’’ IEEE Trans. Ind. Informat., vol. 18,
no. 11, pp. 7935–7945, Nov. 2022.

[14] W. Zhang, W. Guo, X. Liu, Y. Liu, J. Zhou, B. Li, Q. Lu, and S. Yang,
‘‘LSTM-based analysis of industrial IoT equipment,’’ IEEE Access, vol. 6,
pp. 23551–23560, 2018.

[15] L. Zhao, I. B. M. Matsuo, Y. Zhou, and W.-J. Lee, ‘‘Design of an industrial
IoT-based monitoring system for power substations,’’ IEEE Trans. Ind.
Appl., vol. 55, no. 6, pp. 5666–5674, Nov. 2019.

[16] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and S. Mumtaz, ‘‘Intelli-
gent delay-aware partial computing task offloading for multiuser industrial
Internet of Things through edge computing,’’ IEEE Internet Things J.,
vol. 10, no. 4, pp. 2954–2966, Feb. 2023.

[17] W. Fan, S. Li, J. Liu, Y. Su, F. Wu, and Y. Liu, ‘‘Joint task offloading
and resource allocation for accuracy-aware machine-learning-based IIoT
applications,’’ IEEE Internet Things J., vol. 10, no. 4, pp. 3305–3321,
Feb. 2023.

[18] X. Liu, J. Yu, J. Wang, and Y. Gao, ‘‘Resource allocation with edge
computing in IoT networks via machine learning,’’ IEEE Internet Things
J., vol. 7, no. 4, pp. 3415–3426, Apr. 2020.

[19] L. Yang, M. Li, P. Si, R. Yang, E. Sun, and Y. Zhang, ‘‘Energy-efficient
resource allocation for blockchain-enabled industrial Internet of Things
with deep reinforcement learning,’’ IEEE Internet Things J., vol. 8, no. 4,
pp. 2318–2329, Feb. 2021.

[20] L. Sun, L. Wan, and X. Wang, ‘‘Learning-based resource allocation strat-
egy for industrial IoT in UAV-enabled MEC systems,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 7, pp. 5031–5040, Jul. 2021.

[21] Y. He, Y. Ren, Z. Zhou, S. Mumtaz, S. Al-Rubaye, A. Tsourdos, and
O. A. Dobre, ‘‘Two-timescale resource allocation for automated networks
in IIoT,’’ IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7881–7896,
Oct. 2022.

[22] H. Zhou, Z. Wang, G. Min, and H. Zhang, ‘‘UAV-aided computation
offloading in mobile-edge computing networks: A Stackelberg game
approach,’’ IEEE Internet Things J., vol. 10, no. 8, pp. 6622–6633,
Apr. 2023.

[23] Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen, and L. Zhao, ‘‘Deep rein-
forcement learning-based dynamic resource management for mobile edge
computing in industrial Internet of Things,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 7, pp. 4925–4934, Jul. 2021.

VOLUME 11, 2023 83169

H. Mai Do et al.: Deep Reinforcement Learning-Based Task Offloading and Resource Allocation

[24] H. Zhou, Z. Wang, H. Zheng, S. He, and M. Dong, ‘‘Cost minimization-
oriented computation offloading and service caching in mobile cloud-
edge computing: An A3C-based approach,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 10, no. 3, pp. 1326–1338, May 2023.

[25] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, ‘‘A novel DDPG method with
prioritized experience replay,’’ inProc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2017, pp. 316–321.

[26] A. R.Mahmood, H. P. vanHasselt, andR. S. Sutton, ‘‘Weighted importance
sampling for off-policy learning with linear function approximation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1–9.

[27] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[28] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, ‘‘IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,’’ in Proc. ACM Symp. Cloud Comput., Oct. 2018, pp. 401–411.

[29] D. Bertsekas and R. Gallager,Data Networks. Belmont, MA, USA: Athena
Scientific, 2021.

[30] S. Jain and J. M. Smith, ‘‘Open finite queueing networks with M/M/C/K
parallel servers,’’ Comput. Oper. Res., vol. 21, no. 3, pp. 297–317,
Mar. 1994.

[31] A. Sarwar, ‘‘CMOS power consumption and Cpd calculation,’’ in Proc.
Design Considerations Log. Products, 1997, pp. 1–16.

[32] N. Zhao, C. Roberts, S. Hillmansen, and G. Nicholson, ‘‘A multiple train
trajectory optimization to minimize energy consumption and delay,’’ IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2363–2372, Oct. 2015.

[33] F. Meng, P. Chen, L. Wu, and J. Cheng, ‘‘Power allocation in multi-user
cellular networks: Deep reinforcement learning approaches,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 10, pp. 6255–6267, Oct. 2020.

[34] O. Karatalay, I. Psaromiligkos, and B. Champagne, ‘‘Energy-efficient
D2D-aided fog computing under probabilistic time constraints,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–7.

[35] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. 31st Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[37] D. Mehta, ‘‘State-of-the-art reinforcement learning algorithms,’’ Int.
J. Eng. Res., vol. V8, no. 12, pp. 717–722, Jan. 2020.

[38] T. Sharma, A. Chehri, and P. Fortier, ‘‘Review of optical and wireless
backhaul networks and emerging trends of next generation 5G and 6G tech-
nologies,’’ Trans. Emerg. Telecommun. Technol., vol. 32, no. 3, Mar. 2021,
Art. no. e4155.

[39] C. Li, C. Qianqian, and Y. Luo, ‘‘Low-latency edge cooperation caching
based on base station cooperation in SDN based MEC,’’ Exp. Syst. Appl.,
vol. 191, Apr. 2022, Art. no. 116252.

[40] S. Yang, ‘‘A joint optimization scheme for task offloading and resource
allocation based on edge computing in 5G communication networks,’’
Comput. Commun., vol. 160, pp. 759–768, Jul. 2020.

[41] S. S. Alotaibi, ‘‘Ensemble technique with optimal feature selection for
Saudi stock market prediction: A novel hybrid red deer-grey algorithm,’’
IEEE Access, vol. 9, pp. 64929–64944, 2021.

HUONG MAI DO received the B.S. degree in
electronic and telecommunication from the Hanoi
University of Science and Technology, Hanoi,
Vietnam, in 2020. She is currently pursuing the
master’s degree with Soongsil University. Her
research interest includes mobile edge computing.

TUAN PHONG TRAN received the B.S. degree in
information technology from Le Quy Don Techni-
cal University, Vietnam, in 2019. He is currently
pursuing theM.S. degree in information communi-
cation convergence technology with Soongsil Uni-
versity, South Korea. His current research interests
include machine learning, deep learning, and edge
computing.

MYUNGSIK YOO received the B.S. and M.S.
degrees in electrical engineering from Korea Uni-
versity, Seoul, South Korea, in 1989 and 1991,
respectively, and the Ph.D. degree in electrical
engineering from The State University of New
York at Buffalo, New York, in 2000. He was
a Senior Research Engineer with the Nokia
Research Center, Burlington, MA, USA. He is
currently a full-time Professor with the School
of Electronic Engineering, Soongsil University,

Seoul. His research interests include visible-light communications, cloud
computing, and machine learning.

83170 VOLUME 11, 2023

